These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 1657045)
41. Na-K-ATPase in erythrocyte ghosts is not a marker for primary hypertension. Wambach G; Helber A Clin Exp Hypertens (1978); 1981; 3(4):663-73. PubMed ID: 6271508 [TBL] [Abstract][Full Text] [Related]
42. Estriol improves membrane fluidity of erythrocytes by the nitric oxide-dependent mechanism: an electron paramagnetic resonance study. Tsuda K; Shimamoto Y; Kimura K; Nishio I; Masuyama Y Hypertens Res; 2001 May; 24(3):263-9. PubMed ID: 11409649 [TBL] [Abstract][Full Text] [Related]
43. Na-K-adenosine triphosphatase and cation content in the erythrocyte in essential hypertension. Rahman M; Koh H; Primera MI; Del Greco F; Quintanilla AP J Lab Clin Med; 1986 Apr; 107(4):337-41. PubMed ID: 3007645 [TBL] [Abstract][Full Text] [Related]
44. Erythrocyte membrane ouabain-sensitive Na+, K(+)-ATPase of hypertensive Nigerians. Olorunsogo OO; Lawal SO; Falase AO; Okunade WG Afr J Med Med Sci; 1991 Jun; 20(2):75-82. PubMed ID: 1652190 [TBL] [Abstract][Full Text] [Related]
45. A calcium channel blocker, benidipine, improves cell membrane fluidity in human subjects via a nitric oxide-dependent mechanism. An electron paramagnetic resonance investigation. Tsuda K; Nishio I Am J Hypertens; 2004 Dec; 17(12 Pt 1):1143-50. PubMed ID: 15607621 [TBL] [Abstract][Full Text] [Related]
46. Effect of oestrone on membrane fluidity of erythrocytes is mediated by a nitric oxide-dependent pathway: An electron paramagnetic resonance study. Tsuda K; Kinoshita-Shimamoto Y; Kimura K; Nishio I Clin Exp Pharmacol Physiol; 2002 Nov; 29(11):972-9. PubMed ID: 12366388 [TBL] [Abstract][Full Text] [Related]
47. Hormone replacement therapy improves membrane fluidity of erythrocytes in postmenopausal women: an electron paramagnetic resonance investigation. Tsuda K; Kinoshita-Shimamoto Y; Mabuchi Y; Nishio I Am J Hypertens; 2003 Jun; 16(6):502-7. PubMed ID: 12799102 [TBL] [Abstract][Full Text] [Related]
48. Alteration in ouabain-sensitive sodium potassium pump of erythrocytes during pregnancy induced hypertension: a kinetic study. Kaur G; Kapoor N; Mohan P; Sri Nageswari K; Singh MJ; Prasad R J Biochem Mol Biol Biophys; 2002 Jun; 6(3):163-6. PubMed ID: 12186749 [TBL] [Abstract][Full Text] [Related]
49. Role of Se in stabilization of human erythrocyte membrane skeleton. Yang FY; Wo WH Biochem Int; 1987 Aug; 15(2):475-82. PubMed ID: 2829904 [TBL] [Abstract][Full Text] [Related]
50. Measurement by bioluminescence technique of erythrocyte membrane Na+,K+-ATPase activity in hypertensive patients. Lechi C; Corradini P; Polignano R; Bonadonna G; Delva P; Lechi A Clin Chim Acta; 1987 Mar; 163(3):329-37. PubMed ID: 3034452 [TBL] [Abstract][Full Text] [Related]
51. The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na Maćczak A; Duchnowicz P; Sicińska P; Koter-Michalak M; Bukowska B; Michałowicz J Food Chem Toxicol; 2017 Dec; 110():351-359. PubMed ID: 29079494 [TBL] [Abstract][Full Text] [Related]
52. In vivo and in vitro influence of etretinate on erythrocyte membrane fluidity. Górnicki A; Gutsze A Eur J Pharmacol; 2001 Jul; 423(2-3):127-34. PubMed ID: 11448476 [TBL] [Abstract][Full Text] [Related]
53. Spin-labelling study of biomembranes in spontaneously hypertensive rats: calcium- and calmodulin-dependent regulation. Tsuda K; Minatogawa Y; Iwahashi H; Nishio I; Kido R; Masuyama Y Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S234-6. PubMed ID: 9072371 [TBL] [Abstract][Full Text] [Related]
54. Positive effects of naringenin on near-surface membrane fluidity in human erythrocytes. Ajdžanović V; Jakovljević V; Milenković D; Konić-Ristić A; Živanović J; Jarić I; Milošević V Acta Physiol Hung; 2015 Jun; 102(2):131-6. PubMed ID: 26100302 [TBL] [Abstract][Full Text] [Related]
55. The effects of saikosaponins on biological membranes. 2. Changes in electron spin resonance spectra from spin-labelled erythrocyte and erythrocyte ghost membranes. Abe H; Odashima S; Arichi S Planta Med; 1978 Nov; 34(3):287-90. PubMed ID: 212771 [No Abstract] [Full Text] [Related]
56. In vitro effects of ethanol on erythrocyte membrane fluidity of alcoholic patients: an electron spin resonance study. Wood WG; Lahiri S; Gorka C; Armbrecht HJ; Strong R Alcohol Clin Exp Res; 1987 Aug; 11(4):332-5. PubMed ID: 2820262 [TBL] [Abstract][Full Text] [Related]
57. Effects of long-chain acyl carnitine on membrane fluidity of human erythrocytes. Watanabe H; Kobayashi A; Hayashi H; Yamazaki N Biochim Biophys Acta; 1989 Apr; 980(3):315-8. PubMed ID: 2540838 [TBL] [Abstract][Full Text] [Related]
58. Effect of calcium, insulin and growth hormone on membrane fluidity. A spin label study of rat adipocyte and human erythrocyte ghosts. Sauerheber RD; Lewis UJ; Esgate JA; Gordon LM Biochim Biophys Acta; 1980 Apr; 597(2):292-304. PubMed ID: 6245691 [TBL] [Abstract][Full Text] [Related]
59. Red cell membrane dynamic properties and erythrocyte metabolic parameters in essential hypertension: preliminary report. Caimi G; Contorno A; Serra A; Lo Presti R; Grifo G; D'Asaro S; Catania A; Sarno A; Cerasola G Microcirc Endothelium Lymphatics; 1991; 7(4-6):245-55. PubMed ID: 1815106 [TBL] [Abstract][Full Text] [Related]
60. Effects of L-carnitine and palmitoylcarnitine on membrane fluidity of human erythrocytes. Kobayashi A; Watanabe H; Fujisawa S; Yamamoto T; Yamazaki N Biochim Biophys Acta; 1989 Nov; 986(1):83-8. PubMed ID: 2554984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]