BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 1657056)

  • 41. Calcium channel antagonist peptides define several components of transmitter release in the hippocampus.
    Gaur S; Newcomb R; Rivnay B; Bell JR; Yamashiro D; Ramachandran J; Miljanich GP
    Neuropharmacology; 1994 Oct; 33(10):1211-9. PubMed ID: 7862257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glutamate cascade to cAMP response element-binding protein phosphorylation in cultured striatal neurons through calcium-coupled group I metabotropic glutamate receptors.
    Mao L; Wang JQ
    Mol Pharmacol; 2002 Sep; 62(3):473-84. PubMed ID: 12181423
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kainic acid and seizure-induced Fos in subtypes of cerebrocortical neurons.
    Hiscock JJ; Mackenzie L; Medvedev A; Willoughby JO
    J Neurosci Res; 2001 Dec; 66(6):1094-100. PubMed ID: 11746441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ca2+ influx through both L- and N-type Ca2+ channels increases c-fos expression by electrical stimulation of sympathetic neurons.
    Zhao R; Liu L; Rittenhouse AR
    Eur J Neurosci; 2007 Feb; 25(4):1127-35. PubMed ID: 17331208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study of L-type voltage sensitive Ca2+ channels in rat brain regions and cultured neuronal cells.
    Hirota K; Lambert DG
    Neurosci Lett; 1997 Feb; 223(3):169-72. PubMed ID: 9080459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of GluR2 expression in AMPA-induced toxicity in cultured murine cerebral cortical neurons.
    Jensen JB; Lund TM; Timmermann DB; Schousboe A; Pickering DS
    J Neurosci Res; 2001 Aug; 65(3):267-77. PubMed ID: 11494361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons.
    Evans AR; Nicol GD; Vasko MR
    Brain Res; 1996 Mar; 712(2):265-73. PubMed ID: 8814901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium influx via L-type voltage-gated channels mediates the delayed, elevated increases in steady-state c-fos mRNA levels in cerebellar granule cells exposed to excitotoxic levels of glutamate.
    Griffiths R; Ritchie L; Lidwell K; Grieve A; Malcolm CS; Scott M; Meredith C
    J Neurosci Res; 1998 Jun; 52(6):641-52. PubMed ID: 9669313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vascular effects of calcium channel antagonists: new evidence.
    Richard S
    Drugs; 2005; 65 Suppl 2():1-10. PubMed ID: 16398057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contribution of calcium channel subtypes to the intracellular calcium signal in sensory neurons: the effect of injury.
    Fuchs A; Rigaud M; Sarantopoulos CD; Filip P; Hogan QH
    Anesthesiology; 2007 Jul; 107(1):117-27. PubMed ID: 17585223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic evidence for the requirement of adenylyl cyclase 1 in synaptic scaling of forebrain cortical neurons.
    Gong B; Wang H; Gu S; Heximer SP; Zhuo M
    Eur J Neurosci; 2007 Jul; 26(2):275-88. PubMed ID: 17650106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of different calcium channels in K+- and veratridine-induced increases of cytosolic calcium concentration in rat cerebral cortical synaptosomes.
    Meder W; Fink K; Göthert M
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Dec; 356(6):797-805. PubMed ID: 9453466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of Na+/H+ exchangers, excitatory amino acid receptors and voltage-operated Ca2+ channels in human immunodeficiency virus type 1 gp120-mediated increases in intracellular Ca2+ in human neurons and astrocytes.
    Holden CP; Haughey NJ; Nath A; Geiger JD
    Neuroscience; 1999; 91(4):1369-78. PubMed ID: 10391443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vasopressin-induced calcium signaling in cultured cortical neurons.
    Son MC; Brinton RD
    Brain Res; 1998 May; 793(1-2):244-54. PubMed ID: 9630655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuropharmacological characterization of voltage-sensitive calcium channels: possible existence of neomycin-sensitive, omega-conotoxin GVIA- and dihydropyridines-resistant calcium channels in the rat brain.
    Yamada K; Teraoka T; Morita S; Hasegawa T; Nabeshima T
    Jpn J Pharmacol; 1993 Dec; 63(4):423-32. PubMed ID: 8121077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation and mechanism of L-type calcium channel activation via V1a vasopressin receptor activation in cultured cortical neurons.
    Son MC; Brinton RD
    Neurobiol Learn Mem; 2001 Nov; 76(3):388-402. PubMed ID: 11726244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Agrin regulates neuronal responses to excitatory neurotransmitters in vitro and in vivo.
    Hilgenberg LG; Ho KD; Lee D; O'Dowd DK; Smith MA
    Mol Cell Neurosci; 2002 Jan; 19(1):97-110. PubMed ID: 11817901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Agatoxin-IVA-sensitive calcium channels mediate the presynaptic and postsynaptic nicotinic activation of cardiac vagal neurons.
    Wang J; Irnaten M; Mendelowitz D
    J Neurophysiol; 2001 Jan; 85(1):164-8. PubMed ID: 11152716
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacological evidence for an omega-conotoxin, dihydropyridine-insensitive neuronal Ca2+ channel.
    Lundy PM; Frew R; Fuller TW; Hamilton MG
    Eur J Pharmacol; 1991 Jan; 206(1):61-8. PubMed ID: 1648498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Presynaptic alpha2-receptors regulate reverse Na+/Ca2+-exchange and transmitter release in Na+-loaded peripheral sympathetic nerves.
    Török TL; Nagykáldi Z; Sáska Z; Kovács T; Nada SA; Zilliikens S; Magyar K; Sylvester Vizi E
    Neurochem Int; 2004 Oct; 45(5):699-711. PubMed ID: 15234113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.