BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16570969)

  • 1. Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes.
    Lu J; Yi SS; Kopley T; Qian C; Liu J; Gulari E
    J Phys Chem B; 2006 Apr; 110(13):6655-60. PubMed ID: 16570969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires.
    Lu JQ; Yi SS
    Langmuir; 2006 Apr; 22(9):3951-4. PubMed ID: 16618129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating suspended single-walled carbon nanotubes across a large surface area via patterning self-assembled catalyst-containing block copolymer thin films.
    Lu J; Kopley T; Dutton D; Liu J; Qian C; Son H; Dresselhaus M; Kong J
    J Phys Chem B; 2006 Jun; 110(22):10585-9. PubMed ID: 16771301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates.
    Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA
    J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes with small and tunable diameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers.
    Lu JQ; Rider DA; Onyegam E; Wang H; Winnik MA; Manners I; Cheng Q; Fu Q; Liu J
    Langmuir; 2006 May; 22(11):5174-9. PubMed ID: 16700610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture.
    Wang X; Guerin G; Wang H; Wang Y; Manners I; Winnik MA
    Science; 2007 Aug; 317(5838):644-7. PubMed ID: 17673656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles.
    Jaramillo TF; Baeck SH; Cuenya BR; McFarland EW
    J Am Chem Soc; 2003 Jun; 125(24):7148-9. PubMed ID: 12797767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate.
    Chen X; He J; Yan C; Tang H
    J Phys Chem B; 2006 Nov; 110(43):21684-9. PubMed ID: 17064126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micellar nanotubes and AAO nanopores decorated with nanoparticles.
    Jeon SM; Lee SH; Sohn BH; Song O
    Nanotechnology; 2009 Jul; 20(28):285603. PubMed ID: 19550012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template directed formation of nanoparticle decorated multi-walled carbon nanotube bundles with uniform diameter.
    Han TY; Stadermann M; Baumann TF; Murphy KE; Satcher JH
    Nanotechnology; 2011 Oct; 22(43):435603. PubMed ID: 21967786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor.
    Wang P; Lu J; Zhou O
    Nanotechnology; 2008 May; 19(18):185605. PubMed ID: 21825693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-catalyst-free growth of single-walled carbon nanotubes.
    Liu B; Ren W; Gao L; Li S; Pei S; Liu C; Jiang C; Cheng HM
    J Am Chem Soc; 2009 Feb; 131(6):2082-3. PubMed ID: 19170494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective localization of preformed nanoparticles in morphologically controllable block copolymer aggregates in solution.
    Mai Y; Eisenberg A
    Acc Chem Res; 2012 Oct; 45(10):1657-66. PubMed ID: 22839780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution.
    Wang Y; Xu X; Tian Z; Zong Y; Cheng H; Lin C
    Chemistry; 2006 Mar; 12(9):2542-9. PubMed ID: 16389619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes.
    Saito T; Ohshima S; Xu WC; Ago H; Yumura M; Iijima S
    J Phys Chem B; 2005 Jun; 109(21):10647-52. PubMed ID: 16852292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition.
    Jodin L; Dupuis AC; Rouvière E; Reiss P
    J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating patterned carbon nanotube catalysts through the microcontact printing of block copolymer micellar thin films.
    Bennett RD; Hart AJ; Miller AC; Hammond PT; Irvine DJ; Cohen RE
    Langmuir; 2006 Sep; 22(20):8273-6. PubMed ID: 16981735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assemblies of carbon nanotubes and unencapsulated sub-10-nm gold nanoparticles.
    Hang Q; Maschmann MR; Fisher TS; Janes DB
    Small; 2007 Jul; 3(7):1266-71. PubMed ID: 17487897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.