BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 16571675)

  • 21. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins.
    Sun LP; Seemann J; Goldstein JL; Brown MS
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6519-26. PubMed ID: 17428919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repression of sterol regulatory element-binding protein 1-c is involved in the protective effects of exendin-4 in pancreatic β-cell line.
    Hong SW; Lee J; Park SE; Rhee EJ; Park CY; Oh KW; Park SW; Lee WY
    Mol Cell Endocrinol; 2012 Oct; 362(1-2):242-52. PubMed ID: 22820130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.
    Baker N; Sohn J; Tuan RS
    Stem Cell Res Ther; 2015 Dec; 6():238. PubMed ID: 26626726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2.
    Sharpe LJ; Brown AJ
    Biochem Biophys Res Commun; 2008 Sep; 373(4):670-4. PubMed ID: 18602894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig.
    Radhakrishnan A; Ikeda Y; Kwon HJ; Brown MS; Goldstein JL
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6511-8. PubMed ID: 17428920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites.
    Su L; Zhou L; Chen FJ; Wang H; Qian H; Sheng Y; Zhu Y; Yu H; Gong X; Cai L; Yang X; Xu L; Zhao TJ; Li JZ; Chen XW; Li P
    EMBO J; 2019 Apr; 38(8):. PubMed ID: 30858281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-talk between TLR4-MyD88-NF-κB and SCAP-SREBP2 pathways mediates macrophage foam cell formation.
    Li LC; Varghese Z; Moorhead JF; Lee CT; Chen JB; Ruan XZ
    Am J Physiol Heart Circ Physiol; 2013 Mar; 304(6):H874-84. PubMed ID: 23335792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ER cholesterol sensor SCAP promotes CARTS biogenesis at ER-Golgi membrane contact sites.
    Wakana Y; Hayashi K; Nemoto T; Watanabe C; Taoka M; Angulo-Capel J; Garcia-Parajo MF; Kumata H; Umemura T; Inoue H; Arasaki K; Campelo F; Tagaya M
    J Cell Biol; 2021 Jan; 220(1):. PubMed ID: 33156328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP.
    Porstmann T; Griffiths B; Chung YL; Delpuech O; Griffiths JR; Downward J; Schulze A
    Oncogene; 2005 Sep; 24(43):6465-81. PubMed ID: 16007182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SREBP-1 activation by glucose mediates TGF-β upregulation in mesangial cells.
    Uttarwar L; Gao B; Ingram AJ; Krepinsky JC
    Am J Physiol Renal Physiol; 2012 Feb; 302(3):F329-41. PubMed ID: 22031849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dipyridamole Inhibits Lipogenic Gene Expression by Retaining SCAP-SREBP in the Endoplasmic Reticulum.
    Esquejo RM; Roqueta-Rivera M; Shao W; Phelan PE; Seneviratne U; Am Ende CW; Hershberger PM; Machamer CE; Espenshade PJ; Osborne TF
    Cell Chem Biol; 2021 Feb; 28(2):169-179.e7. PubMed ID: 33096051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Point mutation in luminal loop 7 of Scap protein blocks interaction with loop 1 and abolishes movement to Golgi.
    Zhang Y; Motamed M; Seemann J; Brown MS; Goldstein JL
    J Biol Chem; 2013 May; 288(20):14059-14067. PubMed ID: 23564452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance.
    Radhakrishnan A; Goldstein JL; McDonald JG; Brown MS
    Cell Metab; 2008 Dec; 8(6):512-21. PubMed ID: 19041766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced glycation end products (AGEs) increase human mesangial foam cell formation by increasing Golgi SCAP glycosylation in vitro.
    Yuan Y; Zhao L; Chen Y; Moorhead JF; Varghese Z; Powis SH; Minogue S; Sun Z; Ruan XZ
    Am J Physiol Renal Physiol; 2011 Jul; 301(1):F236-43. PubMed ID: 21511699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation.
    Matsuda M; Korn BS; Hammer RE; Moon YA; Komuro R; Horton JD; Goldstein JL; Brown MS; Shimomura I
    Genes Dev; 2001 May; 15(10):1206-16. PubMed ID: 11358865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion.
    Shukla S; Maclennan GT; Hartman DJ; Fu P; Resnick MI; Gupta S
    Int J Cancer; 2007 Oct; 121(7):1424-32. PubMed ID: 17551921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. P58(IPK) inhibits coxsackievirus-induced apoptosis via the PI3K/Akt pathway requiring activation of ATF6a and subsequent upregulation of mitofusin 2.
    Zhang HM; Qiu Y; Ye X; Hemida MG; Hanson P; Yang D
    Cell Microbiol; 2014 Mar; 16(3):411-24. PubMed ID: 24134518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of luminal Loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis.
    Motamed M; Zhang Y; Wang ML; Seemann J; Kwon HJ; Goldstein JL; Brown MS
    J Biol Chem; 2011 May; 286(20):18002-12. PubMed ID: 21454655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi.
    DeBose-Boyd RA; Brown MS; Li WP; Nohturfft A; Goldstein JL; Espenshade PJ
    Cell; 1999 Dec; 99(7):703-12. PubMed ID: 10619424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ursodeoxycholic acid induces glutathione synthesis through activation of PI3K/Akt pathway in HepG2 cells.
    Arisawa S; Ishida K; Kameyama N; Ueyama J; Hattori A; Tatsumi Y; Hayashi H; Yano M; Hayashi K; Katano Y; Goto H; Takagi K; Wakusawa S
    Biochem Pharmacol; 2009 Mar; 77(5):858-66. PubMed ID: 19073151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.