These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16571737)

  • 21. Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism.
    Kurtz R
    Neuroscience; 2007 May; 146(2):573-83. PubMed ID: 17367948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The complex synaptic pathways onto a looming-detector neuron revealed using serial block-face scanning electron microscopy.
    Wernitznig S; Rind FC; Zankel A; Bock E; Gütl D; Hobusch U; Nikolic M; Pargger L; Pritz E; Radulović S; Sele M; Summerauer S; Pölt P; Leitinger G
    J Comp Neurol; 2022 Feb; 530(2):518-536. PubMed ID: 34338325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feedforward Inhibition Conveys Time-Varying Stimulus Information in a Collision Detection Circuit.
    Wang H; Dewell RB; Zhu Y; Gabbiani F
    Curr Biol; 2018 May; 28(10):1509-1521.e3. PubMed ID: 29754904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A looming-sensitive pathway responds to changes in the trajectory of object motion.
    McMillan GA; Gray JR
    J Neurophysiol; 2012 Aug; 108(4):1052-68. PubMed ID: 22572940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophysiological properties of ventral cochlear nucleus neurons of the dog.
    Bal R; Baydas G; Naziroglu M
    Hear Res; 2009 Oct; 256(1-2):93-103. PubMed ID: 19615433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophysiology of regular firing cells in the rat perirhinal cortex.
    D'Antuono M; Biagini G; Tancredi V; Avoli M
    Hippocampus; 2001; 11(6):662-72. PubMed ID: 11811660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slow adaptation in fast-spiking neurons of visual cortex.
    Descalzo VF; Nowak LG; Brumberg JC; McCormick DA; Sanchez-Vives MV
    J Neurophysiol; 2005 Feb; 93(2):1111-8. PubMed ID: 15385594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron.
    Jones PW; Gabbiani F
    J Neurosci; 2012 Apr; 32(14):4923-34. PubMed ID: 22492048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chemical synapse between two motion detecting neurones in the locust brain.
    Rind FC
    J Exp Biol; 1984 May; 110():143-67. PubMed ID: 6086803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Object approach computation by a giant neuron and its relationship with the speed of escape in the crab Neohelice.
    Oliva D; Tomsic D
    J Exp Biol; 2016 Nov; 219(Pt 21):3339-3352. PubMed ID: 27609763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential expression of intrinsic membrane currents in defined cell types of the anterolateral bed nucleus of the stria terminalis.
    Hammack SE; Mania I; Rainnie DG
    J Neurophysiol; 2007 Aug; 98(2):638-56. PubMed ID: 17537902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identified octopaminergic neurons provide an arousal mechanism in the locust brain.
    Bacon JP; Thompson KS; Stern M
    J Neurophysiol; 1995 Dec; 74(6):2739-43. PubMed ID: 8747228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic mechanisms for adaptive gain rescaling in barrel cortex.
    Díaz-Quesada M; Maravall M
    J Neurosci; 2008 Jan; 28(3):696-710. PubMed ID: 18199769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dendritic Ih ensures high-fidelity dendritic spike responses of motion-sensitive neurons in rat superior colliculus.
    Endo T; Tarusawa E; Notomi T; Kaneda K; Hirabayashi M; Shigemoto R; Isa T
    J Neurophysiol; 2008 May; 99(5):2066-76. PubMed ID: 18216232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronized neural input shapes stimulus selectivity in a collision-detecting neuron.
    Jones PW; Gabbiani F
    Curr Biol; 2010 Nov; 20(22):2052-7. PubMed ID: 21055939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular characterization of neurons in the locust brain signaling impending collision.
    Rind FC
    J Neurophysiol; 1996 Mar; 75(3):986-95. PubMed ID: 8867111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds.
    Benda J; Maler L; Longtin A
    J Neurophysiol; 2010 Nov; 104(5):2806-20. PubMed ID: 21045213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: Intrinsic membrane properties and responses to carbachol and orexins.
    Brown RE; Winston S; Basheer R; Thakkar MM; McCarley RW
    Neuroscience; 2006 Dec; 143(3):739-55. PubMed ID: 17008019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model of feedforward, global, and lateral inhibition in the locust visual system predicts responses to looming stimuli.
    Olson EGN; Wiens TK; Gray JR
    Biol Cybern; 2021 Jun; 115(3):245-265. PubMed ID: 33997912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pair of motion-sensitive neurons in the locust encode approaches of a looming object.
    Gray JR; Blincow E; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Dec; 196(12):927-38. PubMed ID: 20827481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.