These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 16571768)
1. Stabilization of axon branch dynamics by synaptic maturation. Ruthazer ES; Li J; Cline HT J Neurosci; 2006 Mar; 26(13):3594-603. PubMed ID: 16571768 [TBL] [Abstract][Full Text] [Related]
2. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. Meyer MP; Smith SJ J Neurosci; 2006 Mar; 26(13):3604-14. PubMed ID: 16571769 [TBL] [Abstract][Full Text] [Related]
3. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. Witte S; Stier H; Cline HT J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202 [TBL] [Abstract][Full Text] [Related]
4. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382 [TBL] [Abstract][Full Text] [Related]
6. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Hu B; Nikolakopoulou AM; Cohen-Cory S Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221 [TBL] [Abstract][Full Text] [Related]
7. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. Edwards JA; Cline HT J Neurophysiol; 1999 Feb; 81(2):895-907. PubMed ID: 10036287 [TBL] [Abstract][Full Text] [Related]
8. Synaptic maturation of the Xenopus retinotectal system: effects of brain-derived neurotrophic factor on synapse ultrastructure. Nikolakopoulou AM; Meynard MM; Marshak S; Cohen-Cory S J Comp Neurol; 2010 Apr; 518(7):972-89. PubMed ID: 20127801 [TBL] [Abstract][Full Text] [Related]
9. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Alsina B; Vu T; Cohen-Cory S Nat Neurosci; 2001 Nov; 4(11):1093-101. PubMed ID: 11593233 [TBL] [Abstract][Full Text] [Related]
10. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. Schmidt JT; Fleming MR; Leu B J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146 [TBL] [Abstract][Full Text] [Related]
11. Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. Manitt C; Nikolakopoulou AM; Almario DR; Nguyen SA; Cohen-Cory S J Neurosci; 2009 Sep; 29(36):11065-77. PubMed ID: 19741113 [TBL] [Abstract][Full Text] [Related]
12. Imaging the Dynamic Branching and Synaptic Differentiation of Santos RA; Rio RD; Cohen-Cory S Cold Spring Harb Protoc; 2020 Nov; 2020(11):. PubMed ID: 32963083 [TBL] [Abstract][Full Text] [Related]
13. BDNF increases synapse density in dendrites of developing tectal neurons in vivo. Sanchez AL; Matthews BJ; Meynard MM; Hu B; Javed S; Cohen Cory S Development; 2006 Jul; 133(13):2477-86. PubMed ID: 16728478 [TBL] [Abstract][Full Text] [Related]
14. Distribution of synaptic vesicle proteins within single retinotectal axons of Xenopus tadpoles. Pinches EM; Cline HT J Neurobiol; 1998 Jun; 35(4):426-34. PubMed ID: 9624623 [TBL] [Abstract][Full Text] [Related]
15. Synapse-dependent and independent mechanisms of thalamocortical axon branching are regulated by neuronal activity. Matsumoto N; Hoshiko M; Sugo N; Fukazawa Y; Yamamoto N Dev Neurobiol; 2016 Mar; 76(3):323-36. PubMed ID: 26061995 [TBL] [Abstract][Full Text] [Related]
16. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection. Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722 [TBL] [Abstract][Full Text] [Related]
17. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. O'Rourke NA; Cline HT; Fraser SE Neuron; 1994 Apr; 12(4):921-34. PubMed ID: 8161460 [TBL] [Abstract][Full Text] [Related]
18. Stentian structural plasticity in the developing visual system. Rahman TN; Munz M; Kutsarova E; Bilash OM; Ruthazer ES Proc Natl Acad Sci U S A; 2020 May; 117(20):10636-10638. PubMed ID: 32366647 [TBL] [Abstract][Full Text] [Related]
19. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection. Xiong M; Pallas SL; Lim S; Finlay BL J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893 [TBL] [Abstract][Full Text] [Related]
20. In vivo time-lapse imaging and serial section electron microscopy reveal developmental synaptic rearrangements. Li J; Erisir A; Cline H Neuron; 2011 Jan; 69(2):273-86. PubMed ID: 21262466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]