These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16571862)

  • 61. Altered expression of major renal Na transporters in rats with unilateral ureteral obstruction.
    Li C; Wang W; Kwon TH; Knepper MA; Nielsen S; Frøkiaer J
    Am J Physiol Renal Physiol; 2003 Jan; 284(1):F155-66. PubMed ID: 12388400
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK.
    Liedtke CM; Cole TS
    Biochim Biophys Acta; 2002 Feb; 1589(1):77-88. PubMed ID: 11909643
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inhibition of Na(+)-K(+)-Cl(-) cotransporter during focal cerebral ischemia decreases edema and neuronal damage.
    Yan Y; Dempsey RJ; Flemmer A; Forbush B; Sun D
    Brain Res; 2003 Jan; 961(1):22-31. PubMed ID: 12535773
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity.
    Beck J; Lenart B; Kintner DB; Sun D
    J Neurosci; 2003 Jun; 23(12):5061-8. PubMed ID: 12832529
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Parietal cells express high levels of Na-K-2Cl cotransporter on migrating into the gastric gland neck.
    McDaniel N; Lytle C
    Am J Physiol; 1999 May; 276(5):G1273-8. PubMed ID: 10330019
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CFTR upregulates the expression of the basolateral Na(+)-K(+)-2Cl(-) cotransporter in cultured pancreatic duct cells.
    Shumaker H; Soleimani M
    Am J Physiol; 1999 Dec; 277(6):C1100-10. PubMed ID: 10600761
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A conserved hydrophobic tetrad near the C terminus of the secretory Na+-K+-2Cl- cotransporter (NKCC1) is required for its correct intracellular processing.
    Nezu A; Parvin MN; Turner RJ
    J Biol Chem; 2009 Mar; 284(11):6869-76. PubMed ID: 19129177
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1).
    Monette MY; Forbush B
    J Biol Chem; 2012 Jan; 287(3):2210-20. PubMed ID: 22121194
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protein aggregation in neurons following OGD: a role for Na+ and Ca2+ ionic dysregulation.
    Chen X; Kintner DB; Baba A; Matsuda T; Shull GE; Sun D
    J Neurochem; 2010 Jan; 112(1):173-82. PubMed ID: 19840218
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The necessity of NKCC1: loss of the chloride cotransporter in a knock-out model and potential compensatory mechanisms.
    Wright R
    J Neurosci; 2009 Oct; 29(42):13094-6. PubMed ID: 19846696
    [No Abstract]   [Full Text] [Related]  

  • 71. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1.
    Cui CY; Childress V; Piao Y; Michel M; Johnson AA; Kunisada M; Ko MS; Kaestner KH; Marmorstein AD; Schlessinger D
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1199-203. PubMed ID: 22223659
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription.
    Johnson AB; Denko N; Barton MC
    Mutat Res; 2008 Apr; 640(1-2):174-9. PubMed ID: 18294659
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pan-genomic binding of hypoxia-inducible transcription factors.
    Schödel J; Mole DR; Ratcliffe PJ
    Biol Chem; 2013 Apr; 394(4):507-17. PubMed ID: 23324384
    [TBL] [Abstract][Full Text] [Related]  

  • 74. COMMD1 and ion transport proteins: what is the COMMection? Focus on "COMMD1 interacts with the COOH terminus of NKCC1 in Calu-3 airway epithelial cells to modulate NKCC1 ubiquitination".
    McDonald FJ
    Am J Physiol Cell Physiol; 2013 Jul; 305(2):C129-30. PubMed ID: 23677795
    [No Abstract]   [Full Text] [Related]  

  • 75. Essential role for epithelial HIF-mediated xenophagy in control of Salmonella infection and dissemination.
    Dowdell AS; Cartwright IM; Kitzenberg DA; Kostelecky RE; Mahjoob O; Saeedi BJ; Welch N; Glover LE; Colgan SP
    Cell Rep; 2022 Sep; 40(13):111409. PubMed ID: 36170839
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hypoxia. 2. Hypoxia regulates cellular metabolism.
    Wheaton WW; Chandel NS
    Am J Physiol Cell Physiol; 2011 Mar; 300(3):C385-93. PubMed ID: 21123733
    [TBL] [Abstract][Full Text] [Related]  

  • 77. HIF1 and DROSHA are involved in MMACHC repression in hypoxia.
    Kiessling E; Peters F; Ebner LJA; Merolla L; Samardzija M; Baumgartner MR; Grimm C; Froese DS
    Biochim Biophys Acta Gen Subj; 2022 Sep; 1866(9):130175. PubMed ID: 35636712
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Impaired hypoxia-inducible factor (HIF) regulation by hyperglycemia.
    Catrina SB
    J Mol Med (Berl); 2014 Oct; 92(10):1025-34. PubMed ID: 25027070
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Potential Mechanisms Underlying Hypoxia-Induced Diabetes in a Rodent Model: Implications for COVID-19.
    Pae EK; Harper RM
    Children (Basel); 2021 Dec; 8(12):. PubMed ID: 34943374
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms.
    Batie M; Del Peso L; Rocha S
    Biomedicines; 2018 Apr; 6(2):. PubMed ID: 29690561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.