BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 1657190)

  • 1. Lipid metabolism in T47D human breast cancer cells: 31P and 13C-NMR studies of choline and ethanolamine uptake.
    Ronen SM; Rushkin E; Degani H
    Biochim Biophys Acta; 1991 Oct; 1095(1):5-16. PubMed ID: 1657190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid metabolism in large T47D human breast cancer spheroids: 31P- and 13C-NMR studies of choline and ethanolamine uptake.
    Ronen SM; Rushkin E; Degani H
    Biochim Biophys Acta; 1992 Mar; 1138(3):203-12. PubMed ID: 1547282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid biosynthetic enzymes in human brain.
    Ross BM; Moszczynska A; Blusztajn JK; Sherwin A; Lozano A; Kish SJ
    Lipids; 1997 Apr; 32(4):351-8. PubMed ID: 9113621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of 13C NMR to the characterization of phospholipid metabolism in cells.
    Ronen SM; Degani H
    Magn Reson Med; 1992 Jun; 25(2):384-9. PubMed ID: 1319537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy.
    Daly PF; Lyon RC; Faustino PJ; Cohen JS
    J Biol Chem; 1987 Nov; 262(31):14875-8. PubMed ID: 3667610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol inhibits phosphatidylcholine and phosphatidylethanolamine biosynthesis in human leukemic monocyte-like U937 cells.
    Chu AJ; Nguyen CT
    Cell Biochem Funct; 1993 Jun; 11(2):107-17. PubMed ID: 8324879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited metabolic interaction of serine with ethanolamine and choline in the turnover of phosphatidylserine, phosphatidylethanolamine and plasmalogens in cultured glioma cells.
    Xu Z; Byers DM; Palmer FB; Spence MW; Cook HW
    Biochim Biophys Acta; 1993 Jun; 1168(2):167-74. PubMed ID: 8504151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholestane-3 beta, 5 alpha, 6 beta-triol stimulates phospholipid synthesis and CTP-phosphocholine cytidyltransferase in cultured LLC-PK cells.
    Mahfouz MM; Smith TL; Zhou Q; Kummerow FA
    Int J Biochem Cell Biol; 1996 Jul; 28(7):739-50. PubMed ID: 8925405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo 13C and 31P NMR analyses of phosphocholine metabolism in rat glioma cells.
    Gillies RJ; Barry JA; Ross BD
    Magn Reson Med; 1994 Sep; 32(3):310-8. PubMed ID: 7984063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of CTP:phosphocholine cytidylyltransferase.
    Jamil H; Vance DE
    Biochim Biophys Acta; 1991 Nov; 1086(3):335-9. PubMed ID: 1660305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular causes of elevated phosphoethanolamine in breast and pancreatic cancer cells.
    Shah T; Krishnamachary B; Wildes F; Wijnen JP; Glunde K; Bhujwalla ZM
    NMR Biomed; 2018 Aug; 31(8):e3936. PubMed ID: 29928787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head-group specificity for feedback regulation of CTP:phosphocholine cytidylyltransferase.
    Jamil H; Vance DE
    Biochem J; 1990 Sep; 270(3):749-54. PubMed ID: 2173550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors.
    Katz-Brull R; Margalit R; Bendel P; Degani H
    MAGMA; 1998 Aug; 6(1):44-52. PubMed ID: 9794289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells.
    Ward CS; Eriksson P; Izquierdo-Garcia JL; Brandes AH; Ronen SM
    PLoS One; 2013; 8(4):e62610. PubMed ID: 23626839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P-NMR determination of phosphomonoesters in relation to phospholipid biosynthesis in testis of the rat at different ages.
    Van der Grond J; Dijkstra G; Roelofsen B; Mali WP
    Biochim Biophys Acta; 1991 May; 1074(1):189-94. PubMed ID: 2043669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the cytidine phospholipid pathways in human cancer cells and effects of 1-beta-D-arabinofuranosylcytosine: a noninvasive 31P nuclear magnetic resonance study.
    Daly PF; Zugmaier G; Sandler D; Carpen M; Myers CE; Cohen JS
    Cancer Res; 1990 Feb; 50(3):552-7. PubMed ID: 2153442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylethanolamine metabolism in rat liver after partial hepatectomy. Control of biosynthesis of phosphatidylethanolamine by the availability of ethanolamine.
    Houweling M; Tijburg LB; Vaartjes WJ; van Golde LM
    Biochem J; 1992 Apr; 283 ( Pt 1)(Pt 1):55-61. PubMed ID: 1314569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid synthesis in the lymphomatous mouse liver studied by 31P nuclear magnetic resonance spectroscopy in vitro and by administration of 14C-radiolabelled compounds in vivo.
    Dixon RM; Tian M
    Biochim Biophys Acta; 1993 Apr; 1181(2):111-21. PubMed ID: 8481399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efflux and hydrolysis of phosphorylethanolamine and phosphorylcholine in stressed cultured rat lenses.
    Jernigan HM; Desouky MA; Geller AM; Blum PS; Ekambaram MC
    Exp Eye Res; 1993 Jan; 56(1):25-33. PubMed ID: 8432332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TNF-induced modulations of phospholipid metabolism in human breast cancer cells.
    Bogin L; Papa MZ; Polak-Charcon S; Degani H
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):217-32. PubMed ID: 9630635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.