BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 16572212)

  • 61. Microfluidic directed formation of liposomes of controlled size.
    Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M
    Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of a disposable infusion system for the delivery of protein therapeutics.
    Eddington DT; Beebe DJ
    Biomed Microdevices; 2005 Sep; 7(3):223-30. PubMed ID: 16133810
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays.
    Sung WC; Chen HH; Makamba H; Chen SH
    Anal Chem; 2009 Oct; 81(19):7967-73. PubMed ID: 19722534
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Suppression of non-specific adsorption using sheath flow.
    Munson MS; Hasenbank MS; Fu E; Yager P
    Lab Chip; 2004 Oct; 4(5):438-45. PubMed ID: 15472727
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Durable, region-specific protein patterning in microfluidic channels.
    Fiddes LK; Chan HK; Lau B; Kumacheva E; Wheeler AR
    Biomaterials; 2010 Jan; 31(2):315-20. PubMed ID: 19800682
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.
    Samy R; Glawdel T; Ren CL
    Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrodynamic simulation of cell docking in microfluidic channels with different dam structures.
    Yang J; Li CW; Yang M
    Lab Chip; 2004 Feb; 4(1):53-9. PubMed ID: 15007441
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rapid mixing using two-phase hydraulic focusing in microchannels.
    Wu Z; Nguyen NT
    Biomed Microdevices; 2005 Mar; 7(1):13-20. PubMed ID: 15834516
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recirculating, passive micromixer with a novel sawtooth structure.
    Nichols KP; Ferullo JR; Baeumner AJ
    Lab Chip; 2006 Feb; 6(2):242-6. PubMed ID: 16450034
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.
    Li MW; Huynh BH; Hulvey MK; Lunte SM; Martin RS
    Anal Chem; 2006 Feb; 78(4):1042-51. PubMed ID: 16478094
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimal design of small-diameter silicone chest drain devices.
    Chung J; Li JK
    Cardiovasc Eng; 2006 Mar; 6(1):1-9. PubMed ID: 16900417
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Theory of the flow-induced deformation of shallow compliant microchannels with thick walls.
    Wang X; Christov IC
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190513. PubMed ID: 31824223
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improving agglutination tests by working in microfluidic channels.
    Degré G; Brunet E; Dodge A; Tabeling P
    Lab Chip; 2005 Jun; 5(6):691-4. PubMed ID: 15915264
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microscale features and surface chemical functionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication.
    Russell MT; Pingree LS; Hersam MC; Marks TJ
    Langmuir; 2006 Jul; 22(15):6712-8. PubMed ID: 16831018
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing.
    Yamada M; Hirano T; Yasuda M; Seki M
    Lab Chip; 2006 Feb; 6(2):179-84. PubMed ID: 16450025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.