These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 16572218)
1. AC electroosmotic micromixer for chemical processing in a microchannel. Sasaki N; Kitamori T; Kim HB Lab Chip; 2006 Apr; 6(4):550-4. PubMed ID: 16572218 [TBL] [Abstract][Full Text] [Related]
2. Fluid mixing using AC electrothermal flow on meandering electrodes in a microchannel. Sasaki N; Kitamori T; Kim HB Electrophoresis; 2012 Sep; 33(17):2668-73. PubMed ID: 22965710 [TBL] [Abstract][Full Text] [Related]
3. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Ng WY; Goh S; Lam YC; Yang C; RodrÃguez I Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662 [TBL] [Abstract][Full Text] [Related]
4. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast active mixer using polyelectrolytic ion extractor. Chun H; Kim HC; Chung TD Lab Chip; 2008 May; 8(5):764-71. PubMed ID: 18432347 [TBL] [Abstract][Full Text] [Related]
7. AC electro-osmotic mixing induced by non-contact external electrodes. Wang SC; Chen HP; Lee CY; Yu CC; Chang HC Biosens Bioelectron; 2006 Oct; 22(4):563-7. PubMed ID: 16837182 [TBL] [Abstract][Full Text] [Related]
8. Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel. Chen JK; Weng CN; Yang RJ Lab Chip; 2009 May; 9(9):1267-73. PubMed ID: 19370247 [TBL] [Abstract][Full Text] [Related]
9. Micromixer utilizing electrokinetic instability-induced shedding effect. Tai CH; Yang RJ; Huang MZ; Liu CW; Tsai CH; Fu LM Electrophoresis; 2006 Dec; 27(24):4982-90. PubMed ID: 17109376 [TBL] [Abstract][Full Text] [Related]
10. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials. Lin JL; Lee KH; Lee GB Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251 [TBL] [Abstract][Full Text] [Related]
11. Design and simulation of the micromixer with chaotic advection in twisted microchannels. Jen CP; Wu CY; Lin YC; Wu CY Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786 [TBL] [Abstract][Full Text] [Related]
12. Chaotic mixing in microchannels via low frequency switching transverse electroosmotic flow generated on integrated microelectrodes. Song H; Cai Z; Noh HM; Bennett DJ Lab Chip; 2010 Mar; 10(6):734-40. PubMed ID: 20221561 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic baker's transformation device for three-dimensional rapid mixing. Yasui T; Omoto Y; Osato K; Kaji N; Suzuki N; Naito T; Watanabe M; Okamoto Y; Tokeshi M; Shamoto E; Baba Y Lab Chip; 2011 Oct; 11(19):3356-60. PubMed ID: 21845274 [TBL] [Abstract][Full Text] [Related]
14. Improving the mixing performance of side channel type micromixers using an optimal voltage control model. Wu CH; Yang RJ Biomed Microdevices; 2006 Jun; 8(2):119-31. PubMed ID: 16688571 [TBL] [Abstract][Full Text] [Related]
15. Diffusion based analysis in a sheath flow microchannel: the sheath flow T-sensor. Munson MS; Hawkins KR; Hasenbank MS; Yager P Lab Chip; 2005 Aug; 5(8):856-62. PubMed ID: 16027937 [TBL] [Abstract][Full Text] [Related]
16. Numerical analysis of a rapid magnetic microfluidic mixer. Wen CY; Liang KP; Chen H; Fu LM Electrophoresis; 2011 Nov; 32(22):3268-76. PubMed ID: 22102500 [TBL] [Abstract][Full Text] [Related]
17. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582 [TBL] [Abstract][Full Text] [Related]
18. Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment. Nguyen NT; Huang X Lab Chip; 2005 Nov; 5(11):1320-6. PubMed ID: 16234959 [TBL] [Abstract][Full Text] [Related]
19. A novel microfluidic driver via AC electrokinetics. Kuo CT; Liu CH Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342 [TBL] [Abstract][Full Text] [Related]
20. Facile fabrication of a rigid and chemically resistant micromixer system from photocurable inorganic polymer by static liquid photolithography (SLP). Fang Q; Kim DP; Li X; Yoon TH; Li Y Lab Chip; 2011 Aug; 11(16):2779-84. PubMed ID: 21713287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]