BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16572223)

  • 1. Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization.
    Lim KS; Chang WJ; Koo YM; Bashir R
    Lab Chip; 2006 Apr; 6(4):578-80. PubMed ID: 16572223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterned Au/poly(dimethylsiloxane) substrate fabricated by chemical plating coupled with electrochemical etching for cell patterning.
    Bai HJ; Shao ML; Gou HL; Xu JJ; Chen HY
    Langmuir; 2009 Sep; 25(17):10402-7. PubMed ID: 19415913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.
    Cho H; Yoo H; Park S
    Langmuir; 2010 May; 26(10):7451-7. PubMed ID: 20000759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films.
    Ranjan A; Webster TJ
    Nanotechnology; 2009 Jul; 20(30):305102. PubMed ID: 19581692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscale features and surface chemical functionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication.
    Russell MT; Pingree LS; Hersam MC; Marks TJ
    Langmuir; 2006 Jul; 22(15):6712-8. PubMed ID: 16831018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of different amount of Au on the wetting behavior of PDMS membrane.
    Feng JT; Zhao YP
    Biomed Microdevices; 2008 Feb; 10(1):65-72. PubMed ID: 17659443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane).
    Patrito N; McCague C; Norton PR; Petersen NO
    Langmuir; 2007 Jan; 23(2):715-9. PubMed ID: 17209625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q; Xu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection.
    Li S; Floriano PN; Christodoulides N; Fozdar DY; Shao D; Ali MF; Dharshan P; Mohanty S; Neikirk D; McDevitt JT; Chen S
    Biosens Bioelectron; 2005 Oct; 21(4):574-80. PubMed ID: 16202870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis.
    Hosokawa K; Sato K; Ichikawa N; Maeda M
    Lab Chip; 2004 Jun; 4(3):181-5. PubMed ID: 15159775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Components for integrated poly(dimethylsiloxane) microfluidic systems.
    Ng JM; Gitlin I; Stroock AD; Whitesides GM
    Electrophoresis; 2002 Oct; 23(20):3461-73. PubMed ID: 12412113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns.
    Gou HL; Xu JJ; Xia XH; Chen HY
    ACS Appl Mater Interfaces; 2010 May; 2(5):1324-30. PubMed ID: 20402458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent.
    Wheeler AR; Trapp G; Trapp O; Zare RN
    Electrophoresis; 2004 Apr; 25(7-8):1120-4. PubMed ID: 15095455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces.
    Wang B; Chen K; Jiang S; Reincke F; Tong W; Wang D; Gao C
    Biomacromolecules; 2006 Apr; 7(4):1203-9. PubMed ID: 16602739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.
    Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K
    Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining.
    Zhao DS; Roy B; McCormick MT; Kuhr WG; Brazill SA
    Lab Chip; 2003 May; 3(2):93-9. PubMed ID: 15100789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent microcontact printing of proteins for cell patterning.
    Rozkiewicz DI; Kraan Y; Werten MW; de Wolf FA; Subramaniam V; Ravoo BJ; Reinhoudt DN
    Chemistry; 2006 Aug; 12(24):6290-7. PubMed ID: 16741908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification with well-defined biocompatible triblock copolymers Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface.
    Iwasaki Y; Takamiya M; Iwata R; Yusa S; Akiyoshi K
    Colloids Surf B Biointerfaces; 2007 Jun; 57(2):226-36. PubMed ID: 17360164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible and Stretchable Gold Microstructures on Extra Soft Poly(dimethylsiloxane) Substrates.
    Zhou C; Bette S; Schnakenberg U
    Adv Mater; 2015 Nov; 27(42):6664-9. PubMed ID: 26414621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of complex three-dimensional microchannel systems in PDMS.
    Wu H; Odom TW; Chiu DT; Whitesides GM
    J Am Chem Soc; 2003 Jan; 125(2):554-9. PubMed ID: 12517171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.