These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16572295)

  • 1. Ab initio simulations of desorption and reactivity of glycine at a water-pyrite interface at "iron-sulfur world" prebiotic conditions.
    Pollet R; Boehme C; Marx D
    Orig Life Evol Biosph; 2006 Aug; 36(4):363-79. PubMed ID: 16572295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine at the pyrite-water interface: the role of surface defects.
    Nair NN; Schreiner E; Marx D
    J Am Chem Soc; 2006 Oct; 128(42):13815-26. PubMed ID: 17044710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine on a wet pyrite surface at extreme conditions.
    Boehme C; Marx D
    J Am Chem Soc; 2003 Nov; 125(44):13362-3. PubMed ID: 14583024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface.
    Afrin R; Ganbaatar N; Aono M; Cleaves Ii HJ; Yano TA; Hara M
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29370126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of extreme thermodynamic conditions and pyrite surfaces on peptide synthesis in aqueous media.
    Schreiner E; Nair NN; Marx D
    J Am Chem Soc; 2008 Mar; 130(9):2768-70. PubMed ID: 18254630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides.
    Schreiner E; Nair NN; Wittekindt C; Marx D
    J Am Chem Soc; 2011 Jun; 133(21):8216-26. PubMed ID: 21561111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2).
    Bostick BC; Fendorf S; Helz GR
    Environ Sci Technol; 2003 Jan; 37(2):285-91. PubMed ID: 12564899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen adsorption and desorption at iron pyrite FeS2{100} surfaces.
    Liu T; Temprano I; Jenkins SJ; King DA; Driver SM
    Phys Chem Chem Phys; 2012 Aug; 14(32):11491-9. PubMed ID: 22801863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles.
    Wang T; Qian T; Huo L; Li Y; Zhao D
    Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of adenosine 5'-monophosphate adsorption onto aqueous resident pyrite: potential mechanisms for prebiotic reactions.
    Pontes-Buarques M; Tessis AC; Bonapace JA; Monte MB; Cortés-Lopez G; De Souza-Barros F; Vieyra A
    Orig Life Evol Biosph; 2001; 31(4-5):343-62. PubMed ID: 11599175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of electrocatalytic hydrogen production by a bioinspired catalyst anchored to a pyrite electrode.
    Zipoli F; Car R; Cohen MH; Selloni A
    J Am Chem Soc; 2010 Jun; 132(25):8593-601. PubMed ID: 20521790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrite in contact with supercritical water: the desolation of steam.
    Stirling A; Rozgonyi T; Krack M; Bernasconi M
    Phys Chem Chem Phys; 2015 Jul; 17(26):17375-9. PubMed ID: 26077541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic aspects of pyrite oxidation in an oxidizing gaseous environment: an in situ HATR-IR isotope study.
    Usher CR; Paul KW; Narayansamy J; Kubicki JD; Sparks DL; Schoonen MA; Strongin DR
    Environ Sci Technol; 2005 Oct; 39(19):7576-84. PubMed ID: 16245830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of pyrite-phase transition metal sulfides for capturing leaked high concentrations of gaseous elemental mercury in indoor air: Mechanism and adsorption/desorption kinetics.
    Wang J; Yang Z; Mei J; Wang C; Hong Q; Yang S
    J Colloid Interface Sci; 2022 Sep; 622():431-442. PubMed ID: 35525146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrite surface environment drives molecular adsorption: cystine on pyrite(100) investigated by X-ray photoemission spectroscopy and low energy electron diffraction.
    Sanchez-Arenillas M; Mateo-Marti E
    Phys Chem Chem Phys; 2016 Oct; 18(39):27219-27225. PubMed ID: 27711447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of nitrite and nitrate to ammonium on pyrite.
    Singireddy S; Gordon AD; Smirnov A; Vance MA; Schoonen MA; Szilagyi RK; Strongin DR
    Orig Life Evol Biosph; 2012 Aug; 42(4):275-94. PubMed ID: 22562476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic --> alkaline transitions.
    de Souza-Barros F; Braz-Levigard R; Ching-San Y; Monte MM; Bonapace JA; Montezano V; Vieyra A
    Orig Life Evol Biosph; 2007 Feb; 37(1):27-45. PubMed ID: 16821096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of water in a contact with an iron pyrite FeS2 surface.
    Philpott MR; Goliney IY; Lin TT
    J Chem Phys; 2004 Jan; 120(4):1943-50. PubMed ID: 15268328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT study of the adsorption of microsolvated glycine on a hydrophilic amorphous silica surface.
    Costa D; Tougerti A; Tielens F; Gervais C; Stievano L; Lambert JF
    Phys Chem Chem Phys; 2008 Nov; 10(42):6360-8. PubMed ID: 18972024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the oxidation mechanism of facet-dependent pyrite: implications for the environment and sulfur evolution.
    Liu C; Liu Y; Zeng S; Li D
    Environ Sci Process Impacts; 2023 Dec; 25(12):2031-2041. PubMed ID: 37842808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.