These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16572698)

  • 1. Optical trap stiffness in the presence and absence of spherical aberrations.
    Vermeulen KC; Wuite GJ; Stienen GJ; Schmidt CF
    Appl Opt; 2006 Mar; 45(8):1812-9. PubMed ID: 16572698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations.
    Reihani SN; Oddershede LB
    Opt Lett; 2007 Jul; 32(14):1998-2000. PubMed ID: 17632622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient in-depth trapping with an oil-immersion objective lens.
    Reihani SN; Charsooghi MA; Khalesifard HR; Golestanian R
    Opt Lett; 2006 Mar; 31(6):766-8. PubMed ID: 16544617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of forces and displacements along the axial direction in an optical trap.
    Deufel C; Wang MD
    Biophys J; 2006 Jan; 90(2):657-67. PubMed ID: 16258039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers.
    Fällman E; Axner O
    Appl Opt; 2003 Jul; 42(19):3915-26. PubMed ID: 12868831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved axial trapping with holographic optical tweezers.
    Pollari R; Milstein JN
    Opt Express; 2015 Nov; 23(22):28857-67. PubMed ID: 26561154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Torque Calculations and Measurements for DNA Torsional Studies.
    Hong Y; Ye F; Qian J; Gao X; Inman JT; Wang MD
    Biophys J; 2024 Jul; ():. PubMed ID: 38961622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberration compensation for optical trapping of cells within living mice.
    Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2017 Mar; 56(7):1972-1976. PubMed ID: 28248397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Torque Calculations and Measurements for DNA Torsional Studies.
    Hong Y; Ye F; Qian J; Gao X; Inman JT; Wang MD
    bioRxiv; 2024 Jun; ():. PubMed ID: 38853956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of optically thick specimen using two-photon excitation microscopy.
    Gerritsen HC; De Grauw CJ
    Microsc Res Tech; 1999 Nov; 47(3):206-9. PubMed ID: 10544335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective.
    Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G
    Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical concatenation of a large number of beads with a single-beam optical tweezer.
    Avila R; Ascencio-Rodríguez J; Tapia-Merino D; Rodríguez-Herrera OG; González-Suárez A
    Opt Lett; 2017 Apr; 42(7):1393-1396. PubMed ID: 28362777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.
    Martini N; Bewersdorf J; Hell SW
    J Microsc; 2002 May; 206(Pt 2):146-51. PubMed ID: 12000554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotation of birefringent particles in optical tweezers with spherical aberration.
    Zhong MC; Zhou JH; Ren YX; Li YM; Wang ZQ
    Appl Opt; 2009 Aug; 48(22):4397-402. PubMed ID: 19649044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical trapping of red blood cells in living animals with a water immersion objective.
    Zhong MC; Gong L; Zhou JH; Wang ZQ; Li YM
    Opt Lett; 2013 Dec; 38(23):5134-7. PubMed ID: 24281528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical mirror trap with a large field of view.
    Pitzek M; Steiger R; Thalhammer G; Bernet S; Ritsch-Marte M
    Opt Express; 2009 Oct; 17(22):19414-23. PubMed ID: 19997161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the strength of an optical trap by truncation.
    Rodrigues VR; Mondal A; Dharmadhikari JA; Panigrahi S; Mathur D; Dharmadhikari AK
    PLoS One; 2013; 8(4):e61310. PubMed ID: 23593458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the effective focal shift in an optical trap.
    Neuman KC; Abbondanzieri EA; Block SM
    Opt Lett; 2005 Jun; 30(11):1318-20. PubMed ID: 15981519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.