These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1657273)

  • 1. Amphibian Mauthner cells.
    Will U
    Brain Behav Evol; 1991; 37(5):317-32. PubMed ID: 1657273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal network of the Mauthner cell.
    Fetcho JR
    Brain Behav Evol; 1991; 37(5):298-316. PubMed ID: 1933252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of medullary networks and postsynaptic membrane properties in regulating Mauthner cell responsiveness to sensory excitation.
    Faber DS; Korn H; Lin JW
    Brain Behav Evol; 1991; 37(5):286-97. PubMed ID: 1657272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decrease in occurrence of fast startle responses after selective Mauthner cell ablation in goldfish (Carassius auratus).
    Zottoli SJ; Newman BC; Rieff HI; Winters DC
    J Comp Physiol A; 1999 Feb; 184(2):207-18. PubMed ID: 10192953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mauthner neurons survive metamorphosis in anurans: a comparative HRP study on the cytoarchitecture of Mauthner neurons in amphibians.
    Will U
    J Comp Neurol; 1986 Feb; 244(1):111-20. PubMed ID: 3081602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors.
    Liu YC; Hale ME
    Curr Biol; 2017 Mar; 27(5):697-704. PubMed ID: 28216316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mauthner neuron field potential in newly hatched larvae of the zebra fish.
    Eaton RC; Farley RD
    J Neurophysiol; 1975 May; 38(3):502-12. PubMed ID: 1127453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes.
    Hale ME; Katz HR; Peek MY; Fremont RT
    J Neurogenet; 2016 Jun; 30(2):89-100. PubMed ID: 27302612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibration-evoked startle behavior in larval lampreys.
    Currie SN
    Brain Behav Evol; 1991; 37(5):260-71. PubMed ID: 1933250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish.
    Shimazaki T; Tanimoto M; Oda Y; Higashijima SI
    J Neurosci; 2019 Feb; 39(7):1182-1194. PubMed ID: 30578342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projections of giant fibers, a class of reticular interneurons, in the brain of the silver hatchetfish.
    Barry MA; Bennett MV
    Brain Behav Evol; 1990; 36(6):391-400. PubMed ID: 2073576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mauthner axon networks mediating supraspinal components of the startle response in the goldfish.
    Hackett JT; Faber DS
    Neuroscience; 1983; 8(2):317-31. PubMed ID: 6302561
    [No Abstract]   [Full Text] [Related]  

  • 13. Evolution of the Mauthner axon cap.
    Bierman HS; Zottoli SJ; Hale ME
    Brain Behav Evol; 2009; 73(3):174-87. PubMed ID: 19494486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inputs from the posterior lateral line nerves upon the goldfish Mauthner cells. II. Evidence that the inhibitory components are mediated by interneurons of the recurrent collateral network.
    Faber DS; Korn H
    Brain Res; 1975 Oct; 96(2):349-56. PubMed ID: 1175018
    [No Abstract]   [Full Text] [Related]  

  • 15. Mutations in deadly seven/notch1a reveal developmental plasticity in the escape response circuit.
    Liu KS; Gray M; Otto SJ; Fetcho JR; Beattie CE
    J Neurosci; 2003 Sep; 23(22):8159-66. PubMed ID: 12954879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic properties of larval zebrafish neurons in ethanol.
    Ikeda H; Delargy AH; Yokogawa T; Urban JM; Burgess HA; Ono F
    PLoS One; 2013; 8(5):e63318. PubMed ID: 23658822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circuit Homology between Decussating Pathways in the Ciona Larval CNS and the Vertebrate Startle-Response Pathway.
    Ryan K; Lu Z; Meinertzhagen IA
    Curr Biol; 2017 Mar; 27(5):721-728. PubMed ID: 28216318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy.
    Swain GP; Ayers J; Selzer ME
    J Comp Neurol; 1995 Nov; 362(4):453-67. PubMed ID: 8636461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hox gene misexpression and cell-specific lesions reveal functionality of homeotically transformed neurons.
    Hale ME; Kheirbek MA; Schriefer JE; Prince VE
    J Neurosci; 2004 Mar; 24(12):3070-6. PubMed ID: 15044546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry.
    López JM; Morona R; Moreno N; Domínguez L; González A
    Neurosci Lett; 2007 Sep; 425(2):73-7. PubMed ID: 17822845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.