These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 1657275)

  • 1. Electroencephalogram in vitro and cortical transmembrane potentials in the turtle Chrysemys d'orbigny.
    Velluti JC; Russo RE; Simini F; García-Austt E
    Brain Behav Evol; 1991; 38(1):7-19. PubMed ID: 1657275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs.
    Gaztelu JM; García-Austt E; Bullock TH
    Brain Behav Evol; 1991; 37(3):144-60. PubMed ID: 2070255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cerebral hemisphere of the turtle in vitro. An experimental model with spontaneous interictal-like spikes for the study of epilepsy.
    Velluti JC; Costa da Costa J; Russo RE
    Epilepsy Res; 1997 Jul; 28(1):29-37. PubMed ID: 9255597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroencephalogram activity in the anoxic turtle brain.
    Fernandes JA; Lutz PL; Tannenbaum A; Todorov AT; Liebovitch L; Vertes R
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R911-9. PubMed ID: 9321867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noradrenaline decreases spike voltage threshold and induces electrographic sharp waves in turtle medial cortex in vitro.
    Lorenzo D; Velluti JC
    Brain Behav Evol; 2004; 64(2):104-14. PubMed ID: 15205545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel arrest: implications from membrane resistance in turtle neurons.
    Doll CJ; Hochachka PW; Reiner PB
    Am J Physiol; 1991 Nov; 261(5 Pt 2):R1321-4. PubMed ID: 1719828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Generation of action potentials by cortical neurons in turtles. Dendritic and somatic spikes].
    Pivovarov AS
    Neirofiziologiia; 1976; 8(3):237-42. PubMed ID: 940608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A comparison of the spike train activity of the cortical neurons and of the spatial synchronization of the EEG].
    Pavlova IV; Ponomarev VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(6):1087-95. PubMed ID: 2629393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Whole-cell recording of potassium and sodium currents in cortical, hippocampal, and sympathetic ganglia neurons].
    Cui WY; Zhang YL; Yin XF; Wang H
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2005 Feb; 21(1):105-10. PubMed ID: 21166181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane properties of rat subicular neurons in vitro.
    Mattia D; Hwa GG; Avoli M
    J Neurophysiol; 1993 Sep; 70(3):1244-8. PubMed ID: 8229171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates.
    Bullock TH; Basar E
    Brain Res; 1988; 472(1):57-75. PubMed ID: 3342336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biofeedback of slow brain potentials].
    Kisil A; Birbaumer N
    Z Exp Angew Psychol; 1992; 39(2):216-28. PubMed ID: 1413918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subthreshold frequency selectivity in avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1361-72. PubMed ID: 8035220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium currents in turtle retinal ganglion cells. I. The properties of T- and L-type currents.
    Liu Y; Lasater EM
    J Neurophysiol; 1994 Feb; 71(2):733-42. PubMed ID: 8176435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic mapping of the cortical EEG power in the unrestrained rat: peripheral effects of neuroactive drugs.
    Bringmann A
    Arch Ital Biol; 1995 Jan; 133(1):1-16. PubMed ID: 7748058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and propagation of spontaneous electrographic sharp waves in the in vitro turtle brain: a model of neuronal synchronization.
    Lorenzo D; Macadar O; Velluti JC
    Clin Neurophysiol; 1999 Sep; 110(9):1535-44. PubMed ID: 10479020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates.
    Wu C; Asl MN; Gillis J; Skinner FK; Zhang L
    J Neurophysiol; 2005 Jul; 94(1):741-53. PubMed ID: 15772241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.