These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16573066)

  • 1. A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces.
    Mirkarimi PB; Spiller E; Baker SL; Stearns DG; Robinson JC; Olynick DL; Salmassi F; Liddle JA; Liang T; Stivers AR
    J Nanosci Nanotechnol; 2006 Jan; 6(1):28-35. PubMed ID: 16573066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface design for precise control of spatial growth of a mesostructured inorganic/organic film on a large-scale area.
    Hozumi A; Kojima S; Nagano S; Seki T; Shirahata N; Kameyama T
    Langmuir; 2007 Mar; 23(6):3265-72. PubMed ID: 17295520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.
    Grigorescu AE; Hagen CW
    Nanotechnology; 2009 Jul; 20(29):292001. PubMed ID: 19567961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoslits in silicon chips.
    Aref T; Brenner M; Bezryadin A
    Nanotechnology; 2009 Jan; 20(4):045303. PubMed ID: 19417315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of complex metallic nanostructures by nanoskiving.
    Xu Q; Rioux RM; Whitesides GM
    ACS Nano; 2007 Oct; 1(3):215-27. PubMed ID: 19206652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wide-angle antireflection surface for the visible spectrum.
    Päivänranta B; Saastamoinen T; Kuittinen M
    Nanotechnology; 2009 Sep; 20(37):375301. PubMed ID: 19706945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask.
    Ling XY; Acikgoz C; Phang IY; Hempenius MA; Reinhoudt DN; Vancso GJ; Huskens J
    Nanoscale; 2010 Aug; 2(8):1455-60. PubMed ID: 20820734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin film processing using S-layer proteins: biotemplated assembly of colloidal gold etch masks for fabrication of silicon nanopillar arrays.
    Mark SS; Bergkvist M; Bhatnagar P; Welch C; Goodyear AL; Yang X; Angert ER; Batt CA
    Colloids Surf B Biointerfaces; 2007 Jun; 57(2):161-73. PubMed ID: 17324560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography.
    Chen X; Wei X; Jiang K
    Nanotechnology; 2009 Oct; 20(42):425605. PubMed ID: 19779228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques.
    Kim KH; Moldovan N; Ke C; Espinosa HD; Xiao X; Carlisle JA; Auciello O
    Small; 2005 Aug; 1(8-9):866-74. PubMed ID: 17193541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchrotron-radiation-stimulated etching of SiO2 thin films with a tungsten nano-pillar mask.
    Wang C; Zhang X; Urisu T
    J Synchrotron Radiat; 2006 Nov; 13(Pt 6):432-4. PubMed ID: 17057317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process.
    Urbánek M; Uhlír V; Bábor P; Kolíbalová E; Hrncír T; Spousta J; Sikola T
    Nanotechnology; 2010 Apr; 21(14):145304. PubMed ID: 20215654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography.
    Salaita K; Lee SW; Wang X; Huang L; Dellinger TM; Liu C; Mirkin CA
    Small; 2005 Oct; 1(10):940-5. PubMed ID: 17193372
    [No Abstract]   [Full Text] [Related]  

  • 16. Self-assembled molecular magnets on patterned silicon substrates: bridging bio-molecules with nanoelectronics.
    Chang CC; Sun KW; Lee SF; Kan LS
    Biomaterials; 2007 Apr; 28(11):1941-7. PubMed ID: 17223191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ga(+) beam lithography for nanoscale silicon reactive ion etching.
    Henry MD; Shearn MJ; Chhim B; Scherer A
    Nanotechnology; 2010 Jun; 21(24):245303. PubMed ID: 20484788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopatterning of transition metal surfaces via electrochemical dimple array formation.
    Singh S; Barden WR; Kruse P
    ACS Nano; 2008 Dec; 2(12):2453-64. PubMed ID: 19206279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of ultrasharp vertically aligned Cu-Si nanocones by a DC plasma process.
    Klein KL; Melechko AV; Fowlkes JD; Rack PD; Hensley DK; Meyer HM; Allard LF; McKnight TE; Simpson ML
    J Phys Chem B; 2006 Mar; 110(10):4766-71. PubMed ID: 16526713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.