BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 16573145)

  • 1. Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route.
    Iwasaki T; Nakatsuka R; Murase K; Takata H; Nakamura H; Watano S
    Int J Mol Sci; 2013 Apr; 14(5):9365-78. PubMed ID: 23629669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis.
    Cagli E; Klemm A; Ali A; Gai Z; Unocic KA; Kidder MK; Gurkan B
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38602421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Soft Chemical Synthesis of Magnetite Nanoparticles under Inert Gas Atmosphere. Magnetic Properties and
    Cursaru LM; Piticescu RM; Dragut DV; Morel R; Thébault C; Carrière M; Joisten H; Dieny B
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming.
    Ye Z; Tai Y; Han Z; Liu S; Etheridge ML; Pasek-Allen JL; Shastry C; Liu Y; Li Z; Chen C; Wang Z; Bischof JC; Nam J; Yin Y
    Nano Lett; 2024 Apr; 24(15):4588-4594. PubMed ID: 38587406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle.
    Taufiq A; Nikmah A; Hidayat A; Sunaryono S; Mufti N; Hidayat N; Susanto H
    Heliyon; 2020 Apr; 6(4):e03784. PubMed ID: 32322741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A partial oxidation-based approach to the synthesis of gold-magnetite hybrid nanostructures.
    Ochea RAG; Benzaquén TB; Encina ER
    Sci Rep; 2024 Mar; 14(1):7352. PubMed ID: 38548867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature inspired synthesis of magnetite nanoparticle aggregates from natural berthierine.
    Luis Manuel AV; Amar A; Jaime UF; Arnaldo HC
    RSC Adv; 2023 Oct; 13(46):32054-32062. PubMed ID: 37916060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable ether amines for reverse cationic flotation separation of ultrafine quartz from magnetite.
    Gouvêa Junior JT; Chipakwe V; de Salles Leal Filho L; Chehreh Chelgani S
    Sci Rep; 2023 Nov; 13(1):20550. PubMed ID: 37996485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of reduced magnetization and domain formation in small magnetite nanoparticles.
    Nedelkoski Z; Kepaptsoglou D; Lari L; Wen T; Booth RA; Oberdick SD; Galindo PL; Ramasse QM; Evans RF; Majetich S; Lazarov VK
    Sci Rep; 2017 Apr; 7():45997. PubMed ID: 28393876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a temperature-responsive magnetotocosome as a magnetic targeting drug delivery system for sorafenib tosylate anticancer drug.
    Razmimanesh F; Sodeifian G
    Heliyon; 2023 Nov; 9(11):e21794. PubMed ID: 38027677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety.
    Unterweger H; Dézsi L; Matuszak J; Janko C; Poettler M; Jordan J; Bäuerle T; Szebeni J; Fey T; Boccaccini AR; Alexiou C; Cicha I
    Int J Nanomedicine; 2018; 13():1899-1915. PubMed ID: 29636608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications.
    Nadeem M; Ahmad M; Akhtar MS; Shaari A; Riaz S; Naseem S; Masood M; Saeed MA
    PLoS One; 2016; 11(6):e0158084. PubMed ID: 27348436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The surface structure and thermal properties of novel polymer composite films based on partially phosphorylated poly(vinyl alcohol) with aluminum phosphate.
    Mohamed Saat A; Johan MR
    ScientificWorldJournal; 2014; 2014():439839. PubMed ID: 25506069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery.
    Unterweger H; Tietze R; Janko C; Zaloga J; Lyer S; Dürr S; Taccardi N; Goudouri OM; Hoppe A; Eberbeck D; Schubert DW; Boccaccini AR; Alexiou C
    Int J Nanomedicine; 2014; 9():3659-76. PubMed ID: 25120363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research.
    Wang YX; Xuan S; Port M; Idee JM
    Curr Pharm Des; 2013; 19(37):6575-93. PubMed ID: 23621536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of ultrafine poly(vinylalcohol phosphate) coated magnetite nanoparticles.
    Mohapatra S; Pramanik N; Ghosh SK; Pramanik P
    J Nanosci Nanotechnol; 2006 Mar; 6(3):823-9. PubMed ID: 16573145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging.
    Mahmoudi M; Simchi A; Imani M; Milani AS; Stroeve P
    J Phys Chem B; 2008 Nov; 112(46):14470-81. PubMed ID: 18729404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The one-pot synthesis of dextran-based nanoparticles and their application in in-situ fabrication of dextran-magnetite nanocomposites.
    Dou H; Xu B; Tao K; Tang M; Sun K
    J Mater Sci Mater Med; 2008 Jul; 19(7):2575-80. PubMed ID: 17665106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles.
    Isojima T; Lattuada M; Vander Sande JB; Hatton TA
    ACS Nano; 2008 Sep; 2(9):1799-806. PubMed ID: 19206418
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.