BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16574094)

  • 1. cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo.
    Amore G; Davidson EH
    Dev Biol; 2006 May; 293(2):555-64. PubMed ID: 16574094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB; Davidson EH
    Dev Biol; 2006 May; 293(2):513-25. PubMed ID: 16581059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene.
    Martin EL; Consales C; Davidson EH; Arnone MI
    Dev Biol; 2001 Aug; 236(1):46-63. PubMed ID: 11456443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).
    Rizzo F; Fernandez-Serra M; Squarzoni P; Archimandritis A; Arnone MI
    Dev Biol; 2006 Dec; 300(1):35-48. PubMed ID: 16997294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase.
    Calestani C; Rogers DJ
    Dev Biol; 2010 Apr; 340(2):249-55. PubMed ID: 20122918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
    Revilla-i-Domingo R; Minokawa T; Davidson EH
    Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus.
    EgaƱa AL; Ernst SG
    Dev Dyn; 2004 Oct; 231(2):370-8. PubMed ID: 15366014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence, annotation and developmental expression of the sea urchin Ca(2+) -ATPase family.
    Jayantha Gunaratne H; Vacquier VD
    Gene; 2007 Aug; 397(1-2):67-75. PubMed ID: 17482382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network.
    Yuh CH; Dorman ER; Howard ML; Davidson EH
    Dev Biol; 2004 May; 269(2):536-51. PubMed ID: 15110718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
    Cole AG; Rizzo F; Martinez P; Fernandez-Serra M; Arnone MI
    Development; 2009 Feb; 136(4):541-9. PubMed ID: 19144720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function correlation of micro1 for micromere specification in sea urchin embryos.
    Yamazaki A; Ki S; Kokubo T; Yamaguchi M
    Mech Dev; 2009; 126(8-9):611-23. PubMed ID: 19549568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis.
    Otim O; Amore G; Minokawa T; McClay DR; Davidson EH
    Dev Biol; 2004 Sep; 273(2):226-43. PubMed ID: 15328009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors.
    Lee PY; Davidson EH
    Gene Expr Patterns; 2004 Dec; 5(2):161-5. PubMed ID: 15567710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo.
    Wahl ME; Hahn J; Gora K; Davidson EH; Oliveri P
    Dev Biol; 2009 Nov; 335(2):428-41. PubMed ID: 19679118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.