These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16574127)

  • 1. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model.
    Weinberg EJ; Kaazempur Mofrad MR
    J Biomech; 2007; 40(3):705-11. PubMed ID: 16574127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of the mitral valve.
    Kunzelman KS; Cochran RP; Chuong C; Ring WS; Verrier ED; Eberhart RD
    J Heart Valve Dis; 1993 May; 2(3):326-40. PubMed ID: 8269128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries.
    Lim KH; Yeo JH; Duran CM
    J Heart Valve Dis; 2005 May; 14(3):386-92. PubMed ID: 15974534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of strut chordae transection on mitral valve leaflet biomechanics.
    Chen L; May-Newman K
    Ann Biomed Eng; 2006 Jun; 34(6):917-26. PubMed ID: 16783648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of multicellular constructs with the material point method.
    Guilkey JE; Hoying JB; Weiss JA
    J Biomech; 2006; 39(11):2074-86. PubMed ID: 16095601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor.
    Jernigan SR; Buckner GD; Eischen JW; Cormier DR
    J Biomech Eng; 2007 Dec; 129(6):825-37. PubMed ID: 18067386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of the finite-element method to ventricular mechanics.
    Yin FC
    Crit Rev Biomed Eng; 1985; 12(4):311-42. PubMed ID: 3893884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay.
    Freed AD; Einstein DR; Vesely I
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):100-17. PubMed ID: 16133588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian sensitivity analysis of a model of the aortic valve.
    Becker W; Rowson J; Oakley JE; Yoxall A; Manson G; Worden K
    J Biomech; 2011 May; 44(8):1499-506. PubMed ID: 21481873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties.
    Ranga A; Mongrain R; Mendes Galaz R; Biadillah Y; Cartier R
    J Med Eng Technol; 2004; 28(3):95-103; discussion 104. PubMed ID: 15204613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of aortic valve incompetence in aging: a finite element model.
    Grande KJ; Cochran RP; Reinhall PG; Kunzelman KS
    J Heart Valve Dis; 1999 Mar; 8(2):149-56. PubMed ID: 10224573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modeling of mitral leaflet tissue using a layered shell approximation.
    Wenk JF; Ratcliffe MB; Guccione JM
    Med Biol Eng Comput; 2012 Oct; 50(10):1071-9. PubMed ID: 22971896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.