These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16574145)

  • 21. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA.
    Pan J; Woodson SA
    J Mol Biol; 1999 Dec; 294(4):955-65. PubMed ID: 10588899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local RNA structural changes induced by crystallization are revealed by SHAPE.
    Vicens Q; Gooding AR; Laederach A; Cech TR
    RNA; 2007 Apr; 13(4):536-48. PubMed ID: 17299128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure.
    Shcherbakova I; Brenowitz M
    J Mol Biol; 2005 Nov; 354(2):483-96. PubMed ID: 16242711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complementing global measures of RNA folding with local reports of backbone solvent accessibility by time resolved hydroxyl radical footprinting.
    Schlatterer JC; Brenowitz M
    Methods; 2009 Oct; 49(2):142-7. PubMed ID: 19426806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple folding pathways for the P4-P6 RNA domain.
    Silverman SK; Deras ML; Woodson SA; Scaringe SA; Cech TR
    Biochemistry; 2000 Oct; 39(40):12465-75. PubMed ID: 11015228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the Tetrahymena ribozyme folding pathway using the kinetic footprinting reagent peroxynitrous acid.
    Chaulk SG; MacMillan AM
    Biochemistry; 2000 Jan; 39(1):2-8. PubMed ID: 10625473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mg2+-dependent folding of a large ribozyme without kinetic traps.
    Fang XW; Pan T; Sosnick TR
    Nat Struct Biol; 1999 Dec; 6(12):1091-5. PubMed ID: 10581546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting.
    Shcherbakova I; Brenowitz M
    Nat Protoc; 2008; 3(2):288-302. PubMed ID: 18274531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron.
    Emerick VL; Pan J; Woodson SA
    Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maximizing RNA folding rates: a balancing act.
    Thirumalai D; Woodson SA
    RNA; 2000 Jun; 6(6):790-4. PubMed ID: 10864039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystallization of ribozymes and small RNA motifs by a sparse matrix approach.
    Doudna JA; Grosshans C; Gooding A; Kundrot CE
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7829-33. PubMed ID: 8356090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of a catalytic module on a self-folding RNA.
    Yoshioka W; Ikawa Y; Jaeger L; Shiraishi H; Inoue T
    RNA; 2004 Dec; 10(12):1900-6. PubMed ID: 15525711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA.
    Pan J; Deras ML; Woodson SA
    J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability and cooperativity of individual tertiary contacts in RNA revealed through chemical denaturation.
    Ralston CY; He Q; Brenowitz M; Chance MR
    Nat Struct Biol; 2000 May; 7(5):371-4. PubMed ID: 10802732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA tertiary folding monitored by fluorescence of covalently attached pyrene.
    Silverman SK; Cech TR
    Biochemistry; 1999 Oct; 38(43):14224-37. PubMed ID: 10571996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.