These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1657421)

  • 61. On the characteristics of the visible chemiluminescence following free radical lipid peroxidation.
    Lissi EA; Cáceres T; Llesuy S; Solari L; Boveris A; Videla LA
    Free Radic Res Commun; 1989; 6(5):293-301. PubMed ID: 2792845
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation.
    Sugioka K; Nakano H; Nakano M; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1983 Oct; 753(3):411-21. PubMed ID: 6311278
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA.
    Laughton MJ; Halliwell B; Evans PJ; Hoult JR
    Biochem Pharmacol; 1989 Sep; 38(17):2859-65. PubMed ID: 2476132
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Organic hydroperoxide-dependent oxidation of ethanol by microsomes: lack of a role for free hydroxyl radicals.
    Cederbaum AI
    Arch Biochem Biophys; 1983 Nov; 227(1):329-38. PubMed ID: 6314910
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Formation of the aldehydic choline glycerophospholipids in human red blood cell membrane peroxidized with an azo initiator.
    Kawai Y; Ogamo A; Nakagawa Y
    J Biochem; 1999 Jul; 126(1):115-20. PubMed ID: 10393328
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intervention of adriamycin induced free radical damage.
    Balanehru S; Nagarajan B
    Biochem Int; 1992 Dec; 28(4):735-44. PubMed ID: 1482409
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of lipidic composition of neonatal chick liver and intestine microsomes: changes induced by cholesterol feeding.
    Alejandre MJ; Zafra MF; Ramirez H; Segovia JL; Garcia-Peregrin E
    Int J Biochem; 1985; 17(7):835-8. PubMed ID: 4054425
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol.
    Albano E; Clot P; Morimoto M; Tomasi A; Ingelman-Sundberg M; French SW
    Hepatology; 1996 Jan; 23(1):155-63. PubMed ID: 8550035
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions.
    Smith C; Mitchinson MJ; Aruoma OI; Halliwell B
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):901-5. PubMed ID: 1329721
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of the drug metabolising ability of rat intestinal mucosal microsomes with that of liver.
    Shirkey RS; Chakraborty J; Bridges JW
    Biochem Pharmacol; 1979 Sep; 28(18):2835-9. PubMed ID: 497032
    [No Abstract]   [Full Text] [Related]  

  • 71. NADPH- and linoleic acid hydroperoxide-induced lipid peroxidation and destruction of cytochrome P-450 in hepatic microsomes.
    Iba MM; Mannering GJ
    Biochem Pharmacol; 1987 May; 36(9):1447-55. PubMed ID: 3579983
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Prevention of microsomal production of hydroxyl radicals, but not lipid peroxidation, by the glutathione-glutathione peroxidase system.
    Beloqui O; Cederbaum AI
    Biochem Pharmacol; 1986 Aug; 35(16):2663-9. PubMed ID: 3017360
    [TBL] [Abstract][Full Text] [Related]  

  • 73. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo?
    Aruoma OI; Laughton MJ; Halliwell B
    Biochem J; 1989 Dec; 264(3):863-9. PubMed ID: 2559719
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DNA strand cleavage as a sensitive assay for the production of hydroxyl radicals by microsomes: role of cytochrome P4502E1 in the increased activity after ethanol treatment.
    Kukielka E; Cederbaum AI
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):773-9. PubMed ID: 7945202
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of formation of D2/E2-isoprostanes and F2-isoprostanes in vitro and in vivo--effects of oxygen tension and glutathione.
    Morrow JD; Roberts LJ; Daniel VC; Awad JA; Mirochnitchenko O; Swift LL; Burk RF
    Arch Biochem Biophys; 1998 May; 353(1):160-71. PubMed ID: 9578611
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effects of S-3-1 on lipid peroxidation and scavenging free radicals in vitro.
    Xiaoguang C; Hongyan L; Xiaohong L; Yan L; Rui H
    Chin Med Sci J; 1999 Mar; 14(1):38-40. PubMed ID: 12899382
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microsomal generation of hydroxyl radicals: its role in microsomal ethanol oxidizing system (MEOS) activity and requirement for iron.
    Cederbaum AI
    Ann N Y Acad Sci; 1987; 492():35-49. PubMed ID: 3037964
    [No Abstract]   [Full Text] [Related]  

  • 80. Oxygen-concentration dependence of microsomal chemiluminescence.
    Puntarulo S; Turrens JF; Cederbaum AI
    Free Radic Biol Med; 1989; 7(3):269-73. PubMed ID: 2550333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.