BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16574347)

  • 41. Promoter cloning and characterisation of the transcriptional regulation of the human thyrostimulin A2 subunit.
    Breous E; Wenzel A; Loos U
    Mol Cell Endocrinol; 2005 Dec; 245(1-2):169-80. PubMed ID: 16376481
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and characterization of cDNAs expressed during chick development and encoding different isoforms of a putative zinc finger transcriptional regulator.
    Michaille JJ; Tili E; Calin GA; Garin J; Louwagie M; Croce CM
    Biochimie; 2005 Nov; 87(11):939-49. PubMed ID: 16023281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning of the murine ER71 gene (Etsrp71) and initial characterization of its promoter.
    De Haro L; Janknecht R
    Genomics; 2005 Apr; 85(4):493-502. PubMed ID: 15780752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian.
    Miura S; Hanaoka K; Togashi S
    Bone; 2008 Nov; 43(5):901-9. PubMed ID: 18692165
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuronal cell type-specific promoter of the alpha CaM kinase II gene is activated by Zic2, a Zic family zinc finger protein.
    Sakurada T; Mima K; Kurisaki A; Sugino H; Yamauchi T
    Neurosci Res; 2005 Nov; 53(3):323-30. PubMed ID: 16157407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of mouse RANKL gene expression by Runx2 and PKA pathway.
    Mori K; Kitazawa R; Kondo T; Maeda S; Yamaguchi A; Kitazawa S
    J Cell Biochem; 2006 Aug; 98(6):1629-44. PubMed ID: 16598781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.
    Nakashima K; Zhou X; Kunkel G; Zhang Z; Deng JM; Behringer RR; de Crombrugghe B
    Cell; 2002 Jan; 108(1):17-29. PubMed ID: 11792318
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of RUNX2 isoforms: involvement of cap-dependent and cap-independent mechanisms of translation.
    Elango N; Li Y; Shivshankar P; Katz MS
    J Cell Biochem; 2006 Nov; 99(4):1108-21. PubMed ID: 16767703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of the human PRIP-1 gene structure and transcriptional regulation.
    Murakami A; Matsuda M; Nakasima A; Hirata M
    Gene; 2006 Nov; 382():129-39. PubMed ID: 16952428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of Sp7/Osterix gene silencing in the chondroprogenitor cell line, ATDC5.
    Omoteyama K; Takagi M
    Biochem Biophys Res Commun; 2010 Dec; 403(2):242-6. PubMed ID: 21075078
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A functional promoter region of the CKLFSF2 gene is located in the last intron/exon region of the upstream CKLFSF1 gene.
    Xu M; Yang S; Gao Y; Shi S; Ma D
    Int J Biochem Cell Biol; 2005 Jun; 37(6):1296-307. PubMed ID: 15778092
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptional regulation of the osterix (Osx, Sp7) promoter by tumor necrosis factor identifies disparate effects of mitogen-activated protein kinase and NF kappa B pathways.
    Lu X; Gilbert L; He X; Rubin J; Nanes MS
    J Biol Chem; 2006 Mar; 281(10):6297-306. PubMed ID: 16410254
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular characterization of the zinc finger transcription factor, Osterix.
    Hatta M; Yoshimura Y; Deyama Y; Fukamizu A; Suzuki K
    Int J Mol Med; 2006 Mar; 17(3):425-30. PubMed ID: 16465388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program.
    Artigas N; Ureña C; Rodríguez-Carballo E; Rosa JL; Ventura F
    J Biol Chem; 2014 Sep; 289(39):27105-27117. PubMed ID: 25122769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Skeletal analysis and differential gene expression in Runx2/Osterix double heterozygous embryos.
    Baek JE; Choi JY; Kim JE
    Biochem Biophys Res Commun; 2014 Aug; 451(3):442-8. PubMed ID: 25111820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation.
    Lu X; Beck GR; Gilbert LC; Camalier CE; Bateman NW; Hood BL; Conrads TP; Kern MJ; You S; Chen H; Nanes MS
    J Bone Miner Res; 2011 Jan; 26(1):209-19. PubMed ID: 20683885
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and functional regulation of the CD38 promoter.
    Sun L; Iqbal J; Zaidi S; Zhu LL; Zhang X; Peng Y; Moonga BS; Zaidi M
    Biochem Biophys Res Commun; 2006 Mar; 341(3):804-9. PubMed ID: 16442077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter.
    Niger C; Lima F; Yoo DJ; Gupta RR; Buo AM; Hebert C; Stains JP
    Bone; 2011 Oct; 49(4):683-92. PubMed ID: 21820092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective regulation of Mmp13 by 1,25(OH)
    Meyer MB; Benkusky NA; Onal M; Pike JW
    J Steroid Biochem Mol Biol; 2016 Nov; 164():258-264. PubMed ID: 26348136
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Display of different modes of transcription by the promoters of an early embryonic gene, Zfp352, in preimplantation embryos and in somatic cells.
    Liu TY; Chen HH; Lee KH; Choo KB
    Mol Reprod Dev; 2003 Jan; 64(1):52-60. PubMed ID: 12420299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.