These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16574580)

  • 1. A novel method for visualizing functional connectivity using principal component analysis.
    Mikula S; Niebur E
    Int J Neurosci; 2006 Apr; 116(4):419-29. PubMed ID: 16574580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural traffic as voxel-based measure of cerebral functional connectivity in fMRI.
    Beu M; Baudrexel S; Hautzel H; Antke C; Mueller HW
    J Neurosci Methods; 2009 Jan; 176(2):263-9. PubMed ID: 18834906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A brain functional connectivity analysis based on independent component analysis].
    Zeng L; Yang Q; Lin B; Chen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):408-12. PubMed ID: 19499813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the default-mode functional connectivity of the brain correlate with working-memory performances?
    Esposito F; Aragri A; Latorre V; Popolizio T; Scarabino T; Cirillo S; Marciano E; Tedeschi G; Di Salle F
    Arch Ital Biol; 2009 Mar; 147(1-2):11-20. PubMed ID: 19678593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting functional connectivity in fMRI using PCA and regression analysis.
    Zhong Y; Wang H; Lu G; Zhang Z; Jiao Q; Liu Y
    Brain Topogr; 2009 Sep; 22(2):134-44. PubMed ID: 19408112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustered components analysis for functional MRI.
    Chen S; Bouman CA; Lowe MJ
    IEEE Trans Med Imaging; 2004 Jan; 23(1):85-98. PubMed ID: 14719690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
    van den Heuvel MP; Stam CJ; Boersma M; Hulshoff Pol HE
    Neuroimage; 2008 Nov; 43(3):528-39. PubMed ID: 18786642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of subjective affective state from brain activations.
    Rolls ET; Grabenhorst F; Franco L
    J Neurophysiol; 2009 Mar; 101(3):1294-308. PubMed ID: 19109452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the working memory network: studies with functional magnetic resonance imaging and structural equation modeling.
    Schlösser RG; Wagner G; Sauer H
    Neuroscience; 2006 Apr; 139(1):91-103. PubMed ID: 16324797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From the analysis of the brain images to the study of brain networks using functional connectivity and multimodal brain signals.
    Babiloni F
    Brain Topogr; 2010 Jun; 23(2):115-8. PubMed ID: 20454842
    [No Abstract]   [Full Text] [Related]  

  • 11. A connectivity-based method for defining regions-of-interest in fMRI data.
    Deleus F; Van Hulle MM
    IEEE Trans Image Process; 2009 Aug; 18(8):1760-71. PubMed ID: 19414287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task.
    Seminowicz DA; Davis KD
    J Neurophysiol; 2007 May; 97(5):3651-9. PubMed ID: 17314240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive study of whole-brain functional connectivity in children and young adults.
    Jolles DD; van Buchem MA; Crone EA; Rombouts SA
    Cereb Cortex; 2011 Feb; 21(2):385-91. PubMed ID: 20542991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI.
    Hutchison RM; Mirsattari SM; Jones CK; Gati JS; Leung LS
    J Neurophysiol; 2010 Jun; 103(6):3398-406. PubMed ID: 20410359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An fMRI study of acupuncture using independent component analysis.
    Zhang Y; Qin W; Liu P; Tian J; Liang J; von Deneen KM; Liu Y
    Neurosci Lett; 2009 Jan; 449(1):6-9. PubMed ID: 18977409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas.
    de Marco G; Vrignaud P; Destrieux C; de Marco D; Testelin S; Devauchelle B; Berquin P
    Magn Reson Imaging; 2009 Jan; 27(1):1-12. PubMed ID: 18584986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain activity at rest: a multiscale hierarchical functional organization.
    Doucet G; Naveau M; Petit L; Delcroix N; Zago L; Crivello F; Jobard G; Tzourio-Mazoyer N; Mazoyer B; Mellet E; Joliot M
    J Neurophysiol; 2011 Jun; 105(6):2753-63. PubMed ID: 21430278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining neurocognitive networks in the BOLD new world of computed connectivity.
    Mesulam M
    Neuron; 2009 Apr; 62(1):1-3. PubMed ID: 19376059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approaches for exploring anatomical and functional connectivity in the human brain.
    Ramnani N; Behrens TE; Penny W; Matthews PM
    Biol Psychiatry; 2004 Nov; 56(9):613-9. PubMed ID: 15522243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality.
    Sato JR; Junior EA; Takahashi DY; de Maria Felix M; Brammer MJ; Morettin PA
    Neuroimage; 2006 May; 31(1):187-96. PubMed ID: 16434214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.