BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16574920)

  • 21. Arctic ground squirrel resist peroxynitrite-mediated cell death in response to oxygen glucose deprivation.
    Bhowmick S; Drew KL
    Free Radic Biol Med; 2017 Dec; 113():203-211. PubMed ID: 28962873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats.
    Wang JY; Shen J; Gao Q; Ye ZG; Yang SY; Liang HW; Bruce IC; Luo BY; Xia Q
    Stroke; 2008 Mar; 39(3):983-90. PubMed ID: 18239163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of innate preconditioning towards ischemia/anoxia tolerance: Lessons from mammalian hibernators.
    Bhowmick S; Drew KL
    Cond Med; 2019 Jun; 2(3):134-141. PubMed ID: 32542230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous measurement of brain tissue oxygen partial pressure, temperature, and global oxygen consumption during hibernation, arousal, and euthermy in non-sedated and non-anesthetized Arctic ground squirrels.
    Ma Y; Wu S
    J Neurosci Methods; 2008 Sep; 174(2):237-44. PubMed ID: 18722471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hibernation and circadian rhythms of body temperature in free-living Arctic ground squirrels.
    Williams CT; Barnes BM; Richter M; Buck CL
    Physiol Biochem Zool; 2012; 85(4):397-404. PubMed ID: 22705489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of the phosphodiesterase inhibitor olprinone on global cerebral ischemia.
    Okayama N; Matsunaga A; Kakihana Y; Fujikawa K; Inoue K; Nagayama T; Takeyama M; Miyata A; Kanmura Y
    Anesth Analg; 2010 Mar; 110(3):888-94. PubMed ID: 20042441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dietary fatty acid composition and the hibernation patterns in free-ranging arctic ground squirrels.
    Frank CL; Karpovich S; Barnes BM
    Physiol Biochem Zool; 2008; 81(4):486-95. PubMed ID: 18513150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opportunities and barriers to translating the hibernation phenotype for neurocritical care.
    Drew KL; Bhowmick S; Laughlin BW; Goropashnaya AV; Tøien Ø; Sugiura MH; Wong A; Pourrezaei K; Barati Z; Chen CY
    Front Neurol; 2023; 14():1009718. PubMed ID: 36779060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SOD1 overexpression and female sex exhibit region-specific neuroprotection after global cerebral ischemia due to cardiac arrest.
    Kofler J; Hurn PD; Traystman RJ
    J Cereb Blood Flow Metab; 2005 Sep; 25(9):1130-7. PubMed ID: 15843790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermogenic capacity at subzero temperatures: how low can a hibernator go?
    Richter MM; Williams CT; Lee TN; Tøien Ø; Florant GL; Barnes BM; Buck CL
    Physiol Biochem Zool; 2015; 88(1):81-9. PubMed ID: 25590595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Susceptibility to oxygen-glucose deprivation is reduced in acute hippocampal slices from euthermic Syrian golden hamsters relative to slices from Sprague-Dawley rats.
    Mielke JG
    Neurosci Lett; 2013 Oct; 553():13-7. PubMed ID: 23933209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hibernation, a model of neuroprotection.
    Zhou F; Zhu X; Castellani RJ; Stimmelmayr R; Perry G; Smith MA; Drew KL
    Am J Pathol; 2001 Jun; 158(6):2145-51. PubMed ID: 11395392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel.
    Liu Y; Hu W; Wang H; Lu M; Shao C; Menzel C; Yan Z; Li Y; Zhao S; Khaitovich P; Liu M; Chen W; Barnes BM; Yan J
    Physiol Genomics; 2010 Sep; 42A(1):39-51. PubMed ID: 20442247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of a tape removal test to assess neurological deficit after cardiac arrest in rats.
    Albertsmeier M; Teschendorf P; Popp E; Galmbacher R; Vogel P; Böttiger BW
    Resuscitation; 2007 Sep; 74(3):552-8. PubMed ID: 17449165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of MAPKAPK2 during mammalian hibernation.
    Abnous K; Dieni CA; Storey KB
    Cryobiology; 2012 Dec; 65(3):235-41. PubMed ID: 22771537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new insight into the ability to resist Ischemic brain injury: Does hibernation matter?: An Editorial comment for 'Arctic ground squirrel hippocampus tolerates oxygen glucose deprivation independent of hibernation season even when not hibernating and after ATP depletion, acidosis and glutamate efflux'.
    Nathaniel TI; Stewart B; Williams J; Hood M; Imeh-Nathaniel A
    J Neurochem; 2017 Jul; 142(1):10-13. PubMed ID: 28542925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest.
    Dave KR; Saul I; Prado R; Busto R; Perez-Pinzon MA
    Neurosci Lett; 2006 Aug; 404(1-2):170-5. PubMed ID: 16781056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Habituation of Arctic ground squirrels (Urocitellus parryii) to handling and movement during torpor to prevent artificial arousal.
    Christian SL; Rasley BT; Roe T; Moore JT; Harris MB; Drew KL
    Front Physiol; 2014; 5():174. PubMed ID: 24847278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats.
    Böttiger BW; Schmitz B; Wiessner C; Vogel P; Hossmann KA
    J Cereb Blood Flow Metab; 1998 Oct; 18(10):1077-87. PubMed ID: 9778184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of intracerebroventricular application of insulin-like growth factor 1 and its N-terminal tripeptide on cerebral recovery following cardiac arrest in rats.
    Knapp J; Teschendorf P; Vogel P; Bruckner T; Böttiger BW; Popp E
    Resuscitation; 2013 May; 84(5):684-9. PubMed ID: 23103885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.