BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16575498)

  • 1. Pharmacokinetic consequences of active drug efflux at the blood-brain barrier.
    Syvänen S; Xie R; Sahin S; Hammarlund-Udenaes M
    Pharm Res; 2006 Apr; 23(4):705-17. PubMed ID: 16575498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug equilibration across the blood-brain barrier--pharmacokinetic considerations based on the microdialysis method.
    Hammarlund-Udenaes M; Paalzow LK; de Lange EC
    Pharm Res; 1997 Feb; 14(2):128-34. PubMed ID: 9090698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters.
    Groothuis DR; Vavra MW; Schlageter KE; Kang EW; Itskovich AC; Hertzler S; Allen CV; Lipton HL
    J Cereb Blood Flow Metab; 2007 Jan; 27(1):43-56. PubMed ID: 16639426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids.
    Fridén M; Winiwarter S; Jerndal G; Bengtsson O; Wan H; Bredberg U; Hammarlund-Udenaes M; Antonsson M
    J Med Chem; 2009 Oct; 52(20):6233-43. PubMed ID: 19764786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphine brain pharmacokinetics at very low concentrations studied with accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.
    Sadiq MW; Salehpour M; Forsgard N; Possnert G; Hammarlund-Udenaes M
    Drug Metab Dispos; 2011 Feb; 39(2):174-9. PubMed ID: 21059857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine.
    Boström E; Hammarlund-Udenaes M; Simonsson US
    Anesthesiology; 2008 Mar; 108(3):495-505. PubMed ID: 18292687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux.
    Groenendaal D; Freijer J; de Mik D; Bouw MR; Danhof M; de Lange EC
    Br J Pharmacol; 2007 Jul; 151(5):701-12. PubMed ID: 17471182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P-glycoprotein differentially affects escitalopram, levomilnacipran, vilazodone and vortioxetine transport at the mouse blood-brain barrier in vivo.
    Bundgaard C; Eneberg E; Sánchez C
    Neuropharmacology; 2016 Apr; 103():104-11. PubMed ID: 26700248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of age on the distribution of morphine and morphine-3-glucuronide across the blood-brain barrier in sheep.
    Bengtsson J; Ederoth P; Ley D; Hansson S; Amer-Wåhlin I; Hellström-Westas L; Marsál K; Nordström CH; Hammarlund-Udenaes M
    Br J Pharmacol; 2009 Jul; 157(6):1085-96. PubMed ID: 19438510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats--pharmacokinetic/pharmacodynamic modelling.
    Bouw MR; Xie R; Tunblad K; Hammarlund-Udenaes M
    Br J Pharmacol; 2001 Dec; 134(8):1796-804. PubMed ID: 11739257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of utility of cerebrospinal fluid drug concentration as a surrogate for interstitial fluid concentration using microdialysis coupled with cisternal cerebrospinal fluid sampling in wild-type and Mdr1a(-/-) rats.
    Nagaya Y; Nozaki Y; Takenaka O; Watari R; Kusano K; Yoshimura T; Kusuhara H
    Drug Metab Pharmacokinet; 2016 Feb; 31(1):57-66. PubMed ID: 26830080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to measure drug transport across the blood-brain barrier.
    Bickel U
    NeuroRx; 2005 Jan; 2(1):15-26. PubMed ID: 15717054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efflux transport of tolbutamide across the blood-brain barrier.
    Takanaga H; Murakami H; Koyabu N; Matsuo H; Naito M; Tsuruo T; Sawada Y
    J Pharm Pharmacol; 1998 Sep; 50(9):1027-33. PubMed ID: 9811164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysing molecular polar surface descriptors to predict blood-brain barrier permeation.
    Shityakov S; Neuhaus W; Dandekar T; Förster C
    Int J Comput Biol Drug Des; 2013; 6(1-2):146-56. PubMed ID: 23428480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P-Glycoprotein (ABCB1) limits the brain distribution of YQA-14, a novel dopamine D3 receptor antagonist.
    Liu F; Wang X; Li Z; Li J; Zhuang X; Zhang Z
    Chem Pharm Bull (Tokyo); 2015; 63(7):512-8. PubMed ID: 26133067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the Uptake of Central Nervous System Drugs and Candidates across the Blood-Brain Barrier.
    Summerfield SG; Zhang Y; Liu H
    J Pharmacol Exp Ther; 2016 Aug; 358(2):294-305. PubMed ID: 27194478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute Carrier Family of the Organic Anion-Transporting Polypeptides 1A2- Madin-Darby Canine Kidney II: A Promising In Vitro System to Understand the Role of Organic Anion-Transporting Polypeptide 1A2 in Blood-Brain Barrier Drug Penetration.
    Liu H; Yu N; Lu S; Ito S; Zhang X; Prasad B; He E; Lu X; Li Y; Wang F; Xu H; An G; Unadkat JD; Kusuhara H; Sugiyama Y; Sahi J
    Drug Metab Dispos; 2015 Jul; 43(7):1008-18. PubMed ID: 25908246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood-brain barrier transport of morphine in patients with severe brain trauma.
    Ederoth P; Tunblad K; Bouw R; Lundberg CJ; Ungerstedt U; Nordström CH; Hammarlund-Udenaes M
    Br J Clin Pharmacol; 2004 Apr; 57(4):427-35. PubMed ID: 15025740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: A microdialysis study in rats.
    Chen C; Zhou H; Guan C; Zhang H; Li Y; Jiang X; Dong Z; Tao Y; Du J; Wang S; Zhang T; Du N; Guo J; Wu Y; Song Z; Luan H; Wang Y; Du H; Zhang S; Li C; Chang H; Wang T
    Pharmacol Res Perspect; 2020 Apr; 8(2):e00575. PubMed ID: 32266794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of the blood-brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport.
    Xie R; Bouw MR; Hammarlund-Udenaes M
    Br J Pharmacol; 2000 Dec; 131(8):1784-92. PubMed ID: 11139459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.