BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 1657550)

  • 1. Vasopressin: its possible role in circadian time keeping.
    Reghunandanan V; Reghunandanan R; Marya RK
    Chronobiologia; 1991; 18(1):39-47. PubMed ID: 1657550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms.
    Gannon RL; Millan MJ
    Brain Res; 2006 Apr; 1083(1):96-102. PubMed ID: 16551464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin, the pineal gland, and circadian rhythms.
    Cassone VM; Warren WS; Brooks DS; Lu J
    J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous i.c.v. infusion of brain-derived neurotrophic factor modifies hypothalamic-pituitary-adrenal axis activity, locomotor activity and body temperature rhythms in adult male rats.
    Naert G; Ixart G; Tapia-Arancibia L; Givalois L
    Neuroscience; 2006 May; 139(2):779-89. PubMed ID: 16457953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species.
    Kalsbeek A; Verhagen LA; Schalij I; Foppen E; Saboureau M; Bothorel B; Buijs RM; Pévet P
    Eur J Neurosci; 2008 Feb; 27(4):818-27. PubMed ID: 18279365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute alcohol administration stimulates the activity of hypothalamic neurons that express corticotropin-releasing factor and vasopressin.
    Rivier C; Lee S
    Brain Res; 1996 Jul; 726(1-2):1-10. PubMed ID: 8836539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCN outputs and the hypothalamic balance of life.
    Kalsbeek A; Palm IF; La Fleur SE; Scheer FA; Perreau-Lenz S; Ruiter M; Kreier F; Cailotto C; Buijs RM
    J Biol Rhythms; 2006 Dec; 21(6):458-69. PubMed ID: 17107936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of repeated exposure to alcohol on the response of the hypothalamic-pituitary-adrenal axis of the rat: I. Role of changes in hypothalamic neuronal activity.
    Lee S; Schmidt ED; Tilders FJ; Rivier C
    Alcohol Clin Exp Res; 2001 Jan; 25(1):98-105. PubMed ID: 11198721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian timekeeping and multiple timescale neuroendocrine rhythms.
    Bonnefont X
    J Neuroendocrinol; 2010 Mar; 22(3):209-16. PubMed ID: 20070481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Vasopressin: basic and clinical aspects].
    Kubota M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1997 Jun; 17(3):113-21. PubMed ID: 9278936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of hypothalamic-pituitary-adrenal axis responsiveness to stress in a rat model of acute cholestasis.
    Swain MG; Patchev V; Vergalla J; Chrousos G; Jones EA
    J Clin Invest; 1993 May; 91(5):1903-8. PubMed ID: 8387536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotoninergic involvement in the regulation of circadian rhythms of hypothalamic-pituitary adrenal and prolactin axis.
    Scapagnini U; Nisticò G
    Ann Ist Super Sanita; 1978; 14(1):163-72. PubMed ID: 227305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate agonists activate the hypothalamic-pituitary-adrenal axis through hypothalamic paraventricular nucleus but not through vasopressinerg neurons.
    Zelena D; Mergl Z; Makara GB
    Brain Res; 2005 Jan; 1031(2):185-93. PubMed ID: 15649443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow.
    Dallman MF; Strack AM; Akana SF; Bradbury MJ; Hanson ES; Scribner KA; Smith M
    Front Neuroendocrinol; 1993 Oct; 14(4):303-47. PubMed ID: 8258378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasopressin and the output of the hypothalamic biological clock.
    Kalsbeek A; Fliers E; Hofman MA; Swaab DF; Buijs RM
    J Neuroendocrinol; 2010 May; 22(5):362-72. PubMed ID: 20088910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothalamic pituitary adrenal axis and hypothalamic-neurohypophyseal responsiveness in water-deprived rats.
    Grinevich V; Ma XM; Verbalis J; Aguilera G
    Exp Neurol; 2001 Oct; 171(2):329-41. PubMed ID: 11573986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Circadian rhythms in laboratory rats (general characteristics and endocrine aspects)].
    Stoĭnev A; Ikonomov O
    Eksp Med Morfol; 1981; 20(1):1-7. PubMed ID: 7014190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The hypothalamic suprachiasmatic nucleus and pineal gland in the circadian rhythmic organization of mammals].
    Zhou XJ; Yu GD; Yin QZ
    Sheng Li Ke Xue Jin Zhan; 2001 Apr; 32(2):116-20. PubMed ID: 12545879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasopressin neurotransmission and the control of circadian rhythms in the suprachiasmatic nucleus.
    Ingram CD; Ciobanu R; Coculescu IL; Tanasescu R; Coculescu M; Mihai R
    Prog Brain Res; 1998; 119():351-64. PubMed ID: 10074799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of pituitary ACTH secretion during chronic stress.
    Aguilera G
    Front Neuroendocrinol; 1994 Dec; 15(4):321-50. PubMed ID: 7895891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.