These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1657636)

  • 1. Activation of respiration and loss of thermodynamic control in hyperthyroidism. Is it due to increased slipping in mitochondrial proton pumps?
    Luvisetto S; Schmehl I; Conti E; Intravaia E; Azzone GF
    FEBS Lett; 1991 Oct; 291(1):17-20. PubMed ID: 1657636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of loss of thermodynamic control in mitochondria due to hyperthyroidism and temperature.
    Luvisetto S; Schmehl I; Intravaia E; Conti E; Azzone GF
    J Biol Chem; 1992 Aug; 267(22):15348-55. PubMed ID: 1639781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status.
    Hafner RP; Nobes CD; McGown AD; Brand MD
    Eur J Biochem; 1988 Dec; 178(2):511-8. PubMed ID: 2850181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux ratios and pump stoichiometries at sites II and III in liver mitochondria. Effect of slips and leaks.
    Luvisetto S; Conti E; Buso M; Azzone GF
    J Biol Chem; 1991 Jan; 266(2):1034-42. PubMed ID: 1845985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The apparent non-linearity of the relationship between the rate of respiration and the protonmotive force of mitochondria can be explained by heterogeneity of mitochondrial preparations.
    Duszyński J; Wojtczak L
    FEBS Lett; 1985 Mar; 182(2):243-8. PubMed ID: 2984042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperthyroidism and mitochondrial uncoupling.
    Luvisetto S
    Biosci Rep; 1997 Feb; 17(1):17-21. PubMed ID: 9171917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The causes and functions of mitochondrial proton leak.
    Brand MD; Chien LF; Ainscow EK; Rolfe DF; Porter RK
    Biochim Biophys Acta; 1994 Aug; 1187(2):132-9. PubMed ID: 8075107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport.
    Brand MD; Chien LF; Diolez P
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):27-9. PubMed ID: 8280106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory.
    Hafner RP; Brown GC; Brand MD
    Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inhibitors of the slow stage of proton transfer in the link connecting respiration with mitochondrial phosphorylation].
    Iaguzhinskiĭ LS; Krasinskaia IP; Smirnova EG; Kobliakov VA; Kolesova GM
    Biokhimiia; 1976 Mar; 41(3):403-13. PubMed ID: 132196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal sodium- and potassium-activated adenosine triphosphatase and sodium reabsorption in the hypothyroid rat.
    Katz AI; Lindheimer MD
    J Clin Invest; 1973 Apr; 52(4):796-804. PubMed ID: 4348343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of thyroid-stimulated Na+-K+-ATPase of rat heart.
    Philipson KD; Edelman IS
    Am J Physiol; 1977 May; 232(5):C202-6. PubMed ID: 140607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiration in non-phosphorylating yeast mitochondria. Roles of non-ohmic proton conductance and intrinsic uncoupling.
    Ouhabi R; Rigoulet M; Lavie JL; Guérin B
    Biochim Biophys Acta; 1991 Nov; 1060(3):293-8. PubMed ID: 1751514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proton leak across the mitochondrial inner membrane.
    Brand MD
    Biochim Biophys Acta; 1990 Jul; 1018(2-3):128-33. PubMed ID: 2393654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular slipping in redox and ATPase H+ pumps.
    Pietrobon D; Zoratti M; Azzone GF
    Biochim Biophys Acta; 1983 May; 723(2):317-21. PubMed ID: 6221758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.