These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 1657665)
41. Diagnosing AICA-ribosiduria by capillary electrophoresis. Hornik P; Vyskocilová P; Friedecký D; Adam T J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Oct; 843(1):15-9. PubMed ID: 16798121 [TBL] [Abstract][Full Text] [Related]
42. Mechanism for the oleate stimulation of gluconeogenesis from dihydroxyacetone by hepatocytes from fasted rats. Ochs RS; Harris RA Biochim Biophys Acta; 1986 Apr; 886(1):40-7. PubMed ID: 3955080 [TBL] [Abstract][Full Text] [Related]
43. Metabolic adaptation of renal carbohydrate metabolism. V. In vivo response of rat renal-tubule gluconeogenesis to different diuretics. Amores MV; Hortelano P; García-Salguero L; Lupiáñez JA Mol Cell Biochem; 1994 Aug; 137(2):117-25. PubMed ID: 7845386 [TBL] [Abstract][Full Text] [Related]
44. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Muoio DM; Seefeld K; Witters LA; Coleman RA Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):783-91. PubMed ID: 10051453 [TBL] [Abstract][Full Text] [Related]
45. The enzymatic synthesis of 5-amino-4-imidazolecarboxamide riboside triphosphate (ZTP). Sabina RL; Holmes EW; Becker MA Science; 1984 Mar; 223(4641):1193-5. PubMed ID: 6199843 [TBL] [Abstract][Full Text] [Related]
46. Control of lactate utilization by extracellular pH in isolated rat liver cells. Morand C; Remesy C; Demigne C Metabolism; 1994 Feb; 43(2):157-62. PubMed ID: 8121295 [TBL] [Abstract][Full Text] [Related]
47. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Salt IP; Johnson G; Ashcroft SJ; Hardie DG Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):533-9. PubMed ID: 9794792 [TBL] [Abstract][Full Text] [Related]
48. Substrate modulation of aldolase B binding in hepatocytes. Agius L Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):651-8. PubMed ID: 8615843 [TBL] [Abstract][Full Text] [Related]
49. 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved. López JM; Santidrián AF; Campàs C; Gil J Biochem J; 2003 Mar; 370(Pt 3):1027-32. PubMed ID: 12452797 [TBL] [Abstract][Full Text] [Related]
50. Utility of AICAr for metabolic studies is diminished by systemic effects in situ. Foley JM; Adams GR; Meyer RA Am J Physiol; 1989 Sep; 257(3 Pt 1):C488-94. PubMed ID: 2782392 [TBL] [Abstract][Full Text] [Related]
51. Impairment of the modulation by glucose of hepatic gluconeogenesis in the genetically obese (fa/fa) Zucker rat. Sánchez-Gutiérrez JC; Lechuga CG; Sánchez-Arias JA; Samper B; Felíu JE Endocrinology; 1995 May; 136(5):1877-84. PubMed ID: 7720633 [TBL] [Abstract][Full Text] [Related]
52. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Swinnen JV; Beckers A; Brusselmans K; Organe S; Segers J; Timmermans L; Vanderhoydonc F; Deboel L; Derua R; Waelkens E; De Schrijver E; Van de Sande T; Noël A; Foufelle F; Verhoeven G Cancer Res; 2005 Mar; 65(6):2441-8. PubMed ID: 15781660 [TBL] [Abstract][Full Text] [Related]
53. AICAR suppresses IL-2 expression through inhibition of GSK-3 phosphorylation and NF-AT activation in Jurkat T cells. Jhun BS; Oh YT; Lee JY; Kong Y; Yoon KS; Kim SS; Baik HH; Ha J; Kang I Biochem Biophys Res Commun; 2005 Jul; 332(2):339-46. PubMed ID: 15910743 [TBL] [Abstract][Full Text] [Related]
54. The mechanism by which adenosine decreases gluconeogenesis from lactate in isolated rat hepatocytes. Lavoinne A; Buc HA; Claeyssens S; Pinosa M; Matray F Biochem J; 1987 Sep; 246(2):449-54. PubMed ID: 2825638 [TBL] [Abstract][Full Text] [Related]
55. Fluoroquinolones suppress gluconeogenesis by inhibiting fructose 1,6-bisphosphatase in primary monkey hepatocytes. Iguchi T; Goto K; Watanabe K; Hashimoto K; Suzuki T; Kishino H; Fujimoto K; Mori K Toxicol In Vitro; 2020 Jun; 65():104786. PubMed ID: 32004540 [TBL] [Abstract][Full Text] [Related]
56. Effects of added nucleotides on renal carbohydrate metabolism. Weidemann MJ; Hems DA; Krebs HA Biochem J; 1969 Oct; 115(1):1-10. PubMed ID: 4310321 [TBL] [Abstract][Full Text] [Related]
57. Methotrexate and 5-aminoimidazole-4-carboxamide riboside exert synergistic anticancer action against human breast cancer and hepatocellular carcinoma. Cheng XL; Zhou TY; Li B; Li MY; Li L; Li ZQ; Lu W Acta Pharmacol Sin; 2013 Jul; 34(7):951-9. PubMed ID: 23603981 [TBL] [Abstract][Full Text] [Related]
58. Chlorpropamide raises fructose-2,6-bisphosphate concentration and inhibits gluconeogenesis in isolated rat hepatocytes. Monge L; Mojena M; Ortega JL; Samper B; Cabello MA; Feliu JE Diabetes; 1986 Jan; 35(1):89-96. PubMed ID: 3000857 [TBL] [Abstract][Full Text] [Related]
59. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547 [TBL] [Abstract][Full Text] [Related]
60. The ability of adenosine to decrease the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. A cyclic AMP-mediated effect. Bartrons R; Van Schaftingen E; Hers HG Biochem J; 1984 Feb; 218(1):157-63. PubMed ID: 6324747 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]