These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 1657738)
1. Role of superoxide dismutase in the oxidation of N-alkanes by yeasts. Kujumdzieva-Savova AV; Savov VA; Georgieva EI Free Radic Biol Med; 1991; 11(3):263-8. PubMed ID: 1657738 [TBL] [Abstract][Full Text] [Related]
2. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweier JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079 [TBL] [Abstract][Full Text] [Related]
3. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweir JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080 [TBL] [Abstract][Full Text] [Related]
4. Diethyldithiocarbamate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Lushchak V; Semchyshyn H; Lushchak O; Mandryk S Biochem Biophys Res Commun; 2005 Dec; 338(4):1739-44. PubMed ID: 16274662 [TBL] [Abstract][Full Text] [Related]
5. Cu/Zn superoxide dismutase in yeast mitochondria - a general phenomenon. Nedeva TS; Petrova VY; Zamfirova DR; Stephanova EV; Kujumdzieva AV FEMS Microbiol Lett; 2004 Jan; 230(1):19-25. PubMed ID: 14734161 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of Cu/Zn-superoxide dismutase and/or catalase in mice inhibits aorta smooth muscle cell proliferation. Shi M; Yang H; Motley ED; Guo Z Am J Hypertens; 2004 May; 17(5 Pt 1):450-6. PubMed ID: 15110906 [TBL] [Abstract][Full Text] [Related]
7. [Redox Status of Extremophilic Yeast Yarrowia Lipolytica During Adaptation to pH-Stress]. Sekova VY; Gessler NN; Isakova EP; Antipov AN; Dergacheva DI; Deryabina YI; Trubnikova EV Prikl Biokhim Mikrobiol; 2015; 51(6):570-7. PubMed ID: 26859958 [TBL] [Abstract][Full Text] [Related]
8. Oxidative modification and inactivation of Cu,Zn-superoxide dismutase by 2,2'-azobis(2-amidinopropane) dihydrochloride. Kwon HY; Choi SY; Won MH; Kang T; Kang JH Biochim Biophys Acta; 2000 Nov; 1543(1):69-76. PubMed ID: 11087942 [TBL] [Abstract][Full Text] [Related]
9. The balance between Cu,Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Amstad P; Peskin A; Shah G; Mirault ME; Moret R; Zbinden I; Cerutti P Biochemistry; 1991 Sep; 30(38):9305-13. PubMed ID: 1654093 [TBL] [Abstract][Full Text] [Related]
10. Protective effects of carnosine, homocarnosine and anserine against peroxyl radical-mediated Cu,Zn-superoxide dismutase modification. Kang JH; Kim KS; Choi SY; Kwon HY; Won MH; Kang TC Biochim Biophys Acta; 2002 Mar; 1570(2):89-96. PubMed ID: 11985892 [TBL] [Abstract][Full Text] [Related]
11. Pivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization. Morikawa K; Shimokawa H; Matoba T; Kubota H; Akaike T; Talukder MA; Hatanaka M; Fujiki T; Maeda H; Takahashi S; Takeshita A J Clin Invest; 2003 Dec; 112(12):1871-9. PubMed ID: 14679182 [TBL] [Abstract][Full Text] [Related]
12. Effects of inhibition of catalase and superoxide dismutase activity on antioxidant enzyme mRNA levels. MaƮtre B; Jornot L; Junod AF Am J Physiol; 1993 Dec; 265(6 Pt 1):L636-43. PubMed ID: 8279580 [TBL] [Abstract][Full Text] [Related]
13. Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. Ookawara T; Kawamura N; Kitagawa Y; Taniguchi N J Biol Chem; 1992 Sep; 267(26):18505-10. PubMed ID: 1326527 [TBL] [Abstract][Full Text] [Related]
15. Effect of nutrition factors on the synthesis of superoxide dismutase, catalase, and membrane lipid peroxide levels in Cordyceps militaris mycelium. Wang ZS; Gu YX; Yuan QS Curr Microbiol; 2006 Jan; 52(1):74-9. PubMed ID: 16392009 [TBL] [Abstract][Full Text] [Related]
16. [Activity and substrate specificity of the alcohol dehydrogenases of n-alkane oxidizing yeasts]. Sapozhnikova GP; Krauzova VI Mikrobiologiia; 1979; 48(5):793-7. PubMed ID: 574184 [TBL] [Abstract][Full Text] [Related]
17. Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors. Lin SJ; Shyue SK; Shih MC; Chu TH; Chen YH; Ku HH; Chen JW; Tam KB; Chen YL Atherosclerosis; 2007 Jan; 190(1):124-34. PubMed ID: 16600249 [TBL] [Abstract][Full Text] [Related]
18. Salsolinol, a tetrahydroisoquinoline catechol neurotoxin, induces human Cu,Zn-superoxidie dismutase modificaiton. Kang JH J Biochem Mol Biol; 2007 Sep; 40(5):684-9. PubMed ID: 17927901 [TBL] [Abstract][Full Text] [Related]
19. [Role of Cu, Zn- and Mn-containing superoxide dismutases during the yeast Saccharomyces cerevisiae growing on ethanol and glycerol]. Mandryk SIa; Lushchak OV; Semchyshyn HM; Lushchak VI Mikrobiol Z; 2007; 69(2):35-42. PubMed ID: 17494333 [TBL] [Abstract][Full Text] [Related]
20. [Detection of two forms of cytochrome P-450 participating in the oxidation of n-alkanes by Candida yeasts]. Sokolov IuI; Avetisova SM; Davydov RM; Davidov ER Dokl Akad Nauk SSSR; 1986; 286(6):1509-11. PubMed ID: 3956370 [No Abstract] [Full Text] [Related] [Next] [New Search]