BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1657920)

  • 1. Primaquine blocks transport by inhibiting the formation of functional transport vesicles. Studies in a cell-free assay of protein transport through the Golgi apparatus.
    Hiebsch RR; Raub TJ; Wattenberg BW
    J Biol Chem; 1991 Oct; 266(30):20323-8. PubMed ID: 1657920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells.
    Strous GJ; Du Maine A; Zijderhand-Bleekemolen JE; Slot JW; Schwartz AL
    J Cell Biol; 1985 Aug; 101(2):531-9. PubMed ID: 2991301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential intermediates in the pathway of intercompartmental transport in a cell-free system.
    Balch WE; Glick BS; Rothman JE
    Cell; 1984 Dec; 39(3 Pt 2):525-36. PubMed ID: 6096009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel prefusion complex formed during protein transport between Golgi cisternae in a cell-free system.
    Wattenberg BW; Balch WE; Rothman JE
    J Biol Chem; 1986 Feb; 261(5):2202-7. PubMed ID: 3003101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane.
    Bergmann JE; Tokuyasu KT; Singer SJ
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1746-50. PubMed ID: 6262824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of newly synthesized vesicular stomatitis viral glycoprotein to purified Golgi membranes.
    Rothman JE; Fries E
    J Cell Biol; 1981 Apr; 89(1):162-8. PubMed ID: 6262330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free transport to distinct Golgi cisternae is compartment specific and ARF independent.
    Happe S; Weidman P
    J Cell Biol; 1998 Feb; 140(3):511-23. PubMed ID: 9456313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells.
    Bergmann JE; Singer SJ
    J Cell Biol; 1983 Dec; 97(6):1777-87. PubMed ID: 6315743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of vesicular stomatitis virus glycoprotein in a cell-free extract.
    Fries E; Rothman JE
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3870-4. PubMed ID: 6253996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of the vesicular stomatitis glycoprotein to trans Golgi membranes in a cell-free system.
    Rothman JE
    J Biol Chem; 1987 Sep; 262(26):12502-10. PubMed ID: 3040752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of glycoprotein traffic through the secretory pathway by ceramide.
    Rosenwald AG; Pagano RE
    J Biol Chem; 1993 Mar; 268(7):4577-9. PubMed ID: 8383117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system.
    Balch WE; Rothman JE
    Arch Biochem Biophys; 1985 Jul; 240(1):413-25. PubMed ID: 2990347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of GTP-binding "G" proteins in transport through the Golgi stack.
    Melançon P; Glick BS; Malhotra V; Weidman PJ; Serafini T; Gleason ML; Orci L; Rothman JE
    Cell; 1987 Dec; 51(6):1053-62. PubMed ID: 2826014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack.
    Orci L; Malhotra V; Amherdt M; Serafini T; Rothman JE
    Cell; 1989 Feb; 56(3):357-68. PubMed ID: 2536591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system.
    Wattenberg BW
    J Cell Biol; 1990 Aug; 111(2):421-8. PubMed ID: 2166051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of Golgi transport vesicles depends on the presence of the N-ethylmaleimide-sensitive factor (NSF) and a soluble NSF attachment protein (alpha SNAP) during vesicle formation.
    Wattenberg BW; Raub TJ; Hiebsch RR; Weidman PJ
    J Cell Biol; 1992 Sep; 118(6):1321-32. PubMed ID: 1522110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of protein transport through the Golgi in a reconstituted cell-free system.
    Wattenberg BW
    J Electron Microsc Tech; 1991 Feb; 17(2):150-64. PubMed ID: 1901603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-coupled transport of vesicular stomatitis virus G protein between the endoplasmic reticulum and the Golgi.
    Balch WE; Elliott MM; Keller DS
    J Biol Chem; 1986 Nov; 261(31):14681-9. PubMed ID: 3021750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of the membrane glycoprotein of vesicular stomatitis virus to the cell surface in two stages by clathrin-coated vesicles.
    Rothman JE; Bursztyn-Pettegrew H; Fine RE
    J Cell Biol; 1980 Jul; 86(1):162-71. PubMed ID: 6252211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack.
    Orci L; Glick BS; Rothman JE
    Cell; 1986 Jul; 46(2):171-84. PubMed ID: 2872969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.