These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16579573)

  • 1. Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN 6 approach.
    McMillin LM; Xiong X; Han Y; Kleespies TJ; Van Delst P
    Appl Opt; 2006 Mar; 45(9):2028-34. PubMed ID: 16579573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable mixing ratios at variable viewing angles.
    McMillin LM; Crone LJ; Goldberg MD; Kleespies TJ
    Appl Opt; 1995 Sep; 34(27):6269-74. PubMed ID: 21060470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach.
    McMillin LM; Crone LJ; Kleespies TJ
    Appl Opt; 1995 Dec; 34(36):8396-9. PubMed ID: 21068960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model.
    Kleespies TJ; van Delst P; McMillin LM; Derber J
    Appl Opt; 2004 May; 43(15):3103-9. PubMed ID: 15176199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast transmittance model for satellite sounding.
    Rayer PJ
    Appl Opt; 1995 Nov; 34(31):7387-94. PubMed ID: 21060613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of radiances observed from satellite and aircraft with calculations by using two atmospheric transmittance models.
    Murty DG; Smith WL; Woolf HM; Hayden CM
    Appl Opt; 1993 Mar; 32(9):1620-8. PubMed ID: 20820294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative to the effective transmittance approach for the calculation of polychromatic transmittances in rapid transmittance models.
    Xiong X; McMillin LM
    Appl Opt; 2005 Jan; 44(1):67-76. PubMed ID: 15662887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensor-based clear and cloud radiance calculations in the community radiative transfer model.
    Liu Q; Xue Y; Li C
    Appl Opt; 2013 Jul; 52(20):4981-90. PubMed ID: 23852214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].
    Ma PF; Chen LF; Zou MM; Zhang Y; Tao MH; Wang ZL; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3344-9. PubMed ID: 26964207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation.
    Wei H; Chen X; Rao R; Wang Y; Yang P
    Opt Express; 2007 Jun; 15(13):8360-70. PubMed ID: 19547166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Errors that are Due to the Monochromatic-Equivalent Radiative Transfer Approximation in Thermal Emission Problems.
    Turner DS
    Appl Opt; 2000 Nov; 39(31):5663-70. PubMed ID: 18354562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast radiative-transfer model based on the correlated k-distribution method for a high-resolution satellite sounder.
    Mano Y; Ishimoto H
    Appl Opt; 2004 Dec; 43(34):6304-12. PubMed ID: 15619841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric transmittance of an absorbing gas. 3: A computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios.
    McMillin LM; Fleming HE; Hill ML
    Appl Opt; 1979 May; 18(10):1600-6. PubMed ID: 20212899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Satellite observations of atmospheric water vapor.
    Wark DQ; Lienesch JH; Weinreb MP
    Appl Opt; 1974 Mar; 13(3):507-11. PubMed ID: 20126017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmittance of atmospheric gases in the microwave region: a fast model.
    Eyre JR; Woolf HM
    Appl Opt; 1988 Aug; 27(15):3244-9. PubMed ID: 20531924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiances simulated in the presence of clouds by use of a fast radiative transfer model and a multiple-scattering scheme.
    Amorati R; Rizzi R
    Appl Opt; 2002 Mar; 41(9):1604-14. PubMed ID: 11921787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric transmittance of an absorbing gas. 2: A computationally fast and accurate transmittance model for slant paths at different zenith angles.
    Fleming HE; McMillin LM
    Appl Opt; 1977 May; 16(5):1366-70. PubMed ID: 20168702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric transmittances for the AVHRR channels.
    Saunders RW; Edwards DP
    Appl Opt; 1989 Oct; 28(19):4154-60. PubMed ID: 20555841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept.
    Liu X; Smith WL; Zhou DK; Larar A
    Appl Opt; 2006 Jan; 45(1):201-9. PubMed ID: 16422339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of linear forms of the radiative transfer equation with analytic Jacobians.
    Huang B; Smith WL; Huang HL; Woolf HM
    Appl Opt; 2002 Jul; 41(21):4209-19. PubMed ID: 12148748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.