These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16579575)

  • 1. Dispersion analysis of hollow-core modes in ultralarge-bandwidth all-silica Bragg fibers with nanosupports.
    Cojocaru E
    Appl Opt; 2006 Mar; 45(9):2039-45. PubMed ID: 16579575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-index-core Bragg fibers: dispersion properties.
    Monsoriu J; Silvestre E; Ferrando A; Andrés P; Miret J
    Opt Express; 2003 Jun; 11(12):1400-5. PubMed ID: 19466011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Dependent Group Delay of Photonic-Bandgap Hollow-Core Fiber Tuned by Surface-Mode Coupling.
    Wang Y; Li Z; Yu F; Wang M; Han Y; Hu L; Knight J
    Opt Express; 2022 Jan; 30(1):222-231. PubMed ID: 35201201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports.
    Vienne G; Xu Y; Jakobsen C; Deyerl HJ; Jensen J; Sorensen T; Hansen T; Huang Y; Terrel M; Lee R; Mortensen N; Broeng J; Simonsen H; Bjarklev A; Yariv A
    Opt Express; 2004 Jul; 12(15):3500-8. PubMed ID: 19483878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light.
    Fekete J; Várallyay Z; Szipocs R
    Appl Opt; 2008 Oct; 47(29):5330-6. PubMed ID: 18846172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of surface modes in low loss hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Gèrôme F; Leon-Saval SG; Broderick NG; Birks TA; Knight JC
    Opt Express; 2008 Jan; 16(2):1142-9. PubMed ID: 18542188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2007 Dec; 15(26):17577-86. PubMed ID: 19551052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique loss characteristics in TE
    Kubota H; Kosake N; Miyoshi Y; Ohashi M
    Opt Lett; 2018 Jun; 43(11):2599-2602. PubMed ID: 29856439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeezed hollow-core photonic Bragg fiber for surface sensing applications.
    Li J; Qu H; Skorobogatiy M
    Opt Express; 2016 Jul; 24(14):15687-701. PubMed ID: 27410841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers.
    Im SJ; Husakou A; Herrmann J
    Opt Express; 2009 Jul; 17(15):13050-8. PubMed ID: 19654709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins.
    Hochman A; Leviatan Y
    Opt Express; 2005 Aug; 13(16):6193-201. PubMed ID: 19498631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers.
    Skorobogatiy M; Guo N
    Opt Lett; 2007 Apr; 32(8):900-2. PubMed ID: 17375147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-core photonic band-gap fibers: the impact of surface modes.
    Saitoh K; Mortensen N; Koshiba M
    Opt Express; 2004 Feb; 12(3):394-400. PubMed ID: 19474835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers.
    Fuerbach A; Steinvurzel P; Bolger JA; Nulsen A; Eggleton BJ
    Opt Lett; 2005 Apr; 30(8):830-2. PubMed ID: 15865369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector.
    Kumar M; Sakaguchi T; Koyama F
    Opt Lett; 2009 Apr; 34(8):1252-4. PubMed ID: 19370134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica aerogel core waveguide.
    Grogan MD; Leon-Saval SG; England R; Birks TA
    Opt Express; 2010 Oct; 18(21):22497-502. PubMed ID: 20941148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of surface-states in a hollow core photonic crystal fiber.
    Lamilla E; Faria MS; Aldaya I; Jarschel PF; Pita JL; Dainese P
    Opt Express; 2018 Dec; 26(25):32554-32564. PubMed ID: 30645420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.