BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1657960)

  • 1. Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis.
    Wallace CJ; Guillemette JG; Hibiya Y; Smith M
    J Biol Chem; 1991 Nov; 266(32):21355-7. PubMed ID: 1657960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy in protein engineering. Mutagenic manipulation of protein structure to simplify semisynthesis.
    Woods AC; Guillemette JG; Parrish JC; Smith M; Wallace CJ
    J Biol Chem; 1996 Dec; 271(50):32008-15. PubMed ID: 8943249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structurally engineered cytochromes with unusual ligand-binding properties: expression of Saccharomyces cerevisiae Met-80-->Ala iso-1-cytochrome c.
    Lu Y; Casimiro DR; Bren KL; Richards JH; Gray HB
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11456-9. PubMed ID: 8265573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection and deprotection of horse cytochrome c.
    Boon PJ; Tesser GI
    Int J Pept Protein Res; 1985 May; 25(5):510-6. PubMed ID: 2991154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitutions engineered by chemical synthesis at three conserved sites in mitochondrial cytochrome c. Thermodynamic and functional consequences.
    Wallace CJ; Mascagni P; Chait BT; Collawn JF; Paterson Y; Proudfoot AE; Kent SB
    J Biol Chem; 1989 Sep; 264(26):15199-209. PubMed ID: 2475497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semisynthetic analogs of cytochrome c reconstructed from natural and synthetic peptides.
    Nix PT; Warme PK
    Biochim Biophys Acta; 1979 Jun; 578(2):413-27. PubMed ID: 226162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding cytochrome c function: engineering protein structure by semisynthesis.
    Wallace CJ
    FASEB J; 1993 Apr; 7(6):505-15. PubMed ID: 8386119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis.
    Wallace CJ; Clark-Lewis I
    J Biol Chem; 1992 Feb; 267(6):3852-61. PubMed ID: 1310985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between the trimethylation of lysine 77 and cytochrome c metabolism in Saccharomyces cerevisiae.
    Ceesay KJ; Rider LR; Bergman LW; Tuck MT
    Int J Biochem; 1994 May; 26(5):721-34. PubMed ID: 8005357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The semisynthesis of fragments corresponding to residues 66-104 of horse heart cytochrome c.
    Wallace CJ; Offord RE
    Biochem J; 1979 Apr; 179(1):169-82. PubMed ID: 224859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rationale for the absolute conservation of Asn70 and Pro71 in mitochondrial cytochromes c suggested by protein engineering.
    Wallace CJ; Clark-Lewis I
    Biochemistry; 1997 Dec; 36(48):14733-40. PubMed ID: 9398193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation-directed recombination of enzyme-activated peptide fragments: a simple and efficient means to protein engineering. Its use in the creation of cytochrome c analogues for structure-function studies.
    Proudfoot AE; Rose K; Wallace CJ
    J Biol Chem; 1989 May; 264(15):8764-70. PubMed ID: 2542287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of yeast with synthetic oligonucleotides.
    Moerschell RP; Tsunasawa S; Sherman F
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):524-8. PubMed ID: 2829192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semisynthesis of horse heart cytochrome c analogues from two or three fragments.
    ten Kortenaar PB; Adams PJ; Tesser GI
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8279-83. PubMed ID: 3001693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient expression of isotopically labeled peptides for high resolution NMR studies: application to the Cdc42/Rac binding domains of virulent kinases in Candida albicans.
    Osborne MJ; Su Z; Sridaran V; Ni F
    J Biomol NMR; 2003 Aug; 26(4):317-26. PubMed ID: 12815258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of tetraheme cytochrome c3. Modification of oxidoreduction potentials after heme axial ligand replacement.
    Mus-Veteau I; Dolla A; Guerlesquin F; Payan F; Czjzek M; Haser R; Bianco P; Haladjian J; Rapp-Giles BJ; Wall JD
    J Biol Chem; 1992 Aug; 267(24):16851-8. PubMed ID: 1324913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of fragments by classical solution methods for use in cytochrome c semisynthesis.
    Borin G; Marchiori F; Calderan A; Corradin G; Wallace CJ
    Biopolymers; 1986 Dec; 25(12):2271-9. PubMed ID: 3026506
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis and expression of genes encoding tuna, pigeon, and horse cytochromes c in the yeast Saccharomyces cerevisiae.
    Hickey DR; Jayaraman K; Goodhue CT; Shah J; Fingar SA; Clements JM; Hosokawa Y; Tsunasawa S; Sherman F
    Gene; 1991 Aug; 105(1):73-81. PubMed ID: 1657715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminished degradation of yeast cytochrome c by interactions with its physiological partners.
    Pearce DA; Sherman F
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3735-9. PubMed ID: 7731975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.