These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 16579630)
1. Transition metal-peptide binding studied by metal-catalyzed oxidation reactions and mass spectrometry. Bridgewater JD; Lim J; Vachet RW Anal Chem; 2006 Apr; 78(7):2432-8. PubMed ID: 16579630 [TBL] [Abstract][Full Text] [Related]
2. Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. Lim J; Vachet RW Anal Chem; 2003 Mar; 75(5):1164-72. PubMed ID: 12641237 [TBL] [Abstract][Full Text] [Related]
3. Metal-catalyzed oxidation reactions and mass spectrometry: the roles of ascorbate and different oxidizing agents in determining Cu-protein-binding sites. Bridgewater JD; Vachet RW Anal Biochem; 2005 Jun; 341(1):122-30. PubMed ID: 15866536 [TBL] [Abstract][Full Text] [Related]
4. Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10 A of the metal in Cu-binding proteins. Bridgewater JD; Lim J; Vachet RW J Am Soc Mass Spectrom; 2006 Nov; 17(11):1552-9. PubMed ID: 16872838 [TBL] [Abstract][Full Text] [Related]
5. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide. Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841 [TBL] [Abstract][Full Text] [Related]
6. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation. Jankowska E; Pietruszka M; Kowalik-Jankowska T Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001 [TBL] [Abstract][Full Text] [Related]
7. Screening assay for metal-catalyzed oxidation inhibitors using liquid chromatography-mass spectrometry with an N-terminal beta-amyloid peptide. Inoue K; Nakagawa A; Hino T; Oka H Anal Chem; 2009 Mar; 81(5):1819-25. PubMed ID: 19173589 [TBL] [Abstract][Full Text] [Related]
8. Using microwave-assisted metal-catalyzed oxidation reactions and mass spectrometry to increase the rate at which the copper-binding sites of a protein are determined. Bridgewater JD; Vachet RW Anal Chem; 2005 Jul; 77(14):4649-53. PubMed ID: 16013884 [TBL] [Abstract][Full Text] [Related]
9. Using mass spectrometry to study copper-protein binding under native and non-native conditions: beta-2-microglobulin. Lim J; Vachet RW Anal Chem; 2004 Jul; 76(13):3498-504. PubMed ID: 15228316 [TBL] [Abstract][Full Text] [Related]
10. Identification of the copper(II) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry: evidence for multiple isomers at low copper(II) loadings. Srikanth R; Wilson J; Burns CS; Vachet RW Biochemistry; 2008 Sep; 47(35):9258-68. PubMed ID: 18690704 [TBL] [Abstract][Full Text] [Related]
11. Complexation abilities of neuropeptide gamma toward copper(II) ions and products of metal-catalyzed oxidation. Pietruszka M; Jankowska E; Kowalik-Jankowska T; Szewczuk Z; Smużyńska M Inorg Chem; 2011 Aug; 50(16):7489-99. PubMed ID: 21770367 [TBL] [Abstract][Full Text] [Related]
12. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule. Uehara H; Luo S; Aryal B; Levine RL; Rao VA Free Radic Biol Med; 2016 May; 94():161-73. PubMed ID: 26872685 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species. Glover ZK; Wecksler A; Aryal B; Mehta S; Pegues M; Chan W; Lehtimaki M; Luo A; Sreedhara A; Rao VA MAbs; 2022; 14(1):2122957. PubMed ID: 36151884 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the metal-binding site of bovine growth hormone through site-specific metal-catalyzed oxidation and high-performance liquid chromatography-tandem mass spectrometry. Hovorka SW; Williams TD; Schöneich C Anal Biochem; 2002 Jan; 300(2):206-11. PubMed ID: 11779112 [TBL] [Abstract][Full Text] [Related]
15. Coordination abilities of a fragment containing D1 and H12 residues of neuropeptide gamma and products of metal-catalyzed oxidation. Kowalik-Jankowska T; Jankowska E; Kasprzykowski F Inorg Chem; 2010 Mar; 49(5):2182-92. PubMed ID: 20121248 [TBL] [Abstract][Full Text] [Related]
16. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production. Cheignon C; Faller P; Testemale D; Hureau C; Collin F Metallomics; 2016 Oct; 8(10):1081-1089. PubMed ID: 27730227 [TBL] [Abstract][Full Text] [Related]
17. Site-specific DNA damage induced by NADH in the presence of copper(II): role of active oxygen species. Oikawa S; Kawanishi S Biochemistry; 1996 Apr; 35(14):4584-90. PubMed ID: 8605209 [TBL] [Abstract][Full Text] [Related]
18. Metal-catalyzed oxidation of brain-derived neurotrophic factor (BDNF): selectivity and conformational consequences of histidine modification. Jensen JL; Kuczera K; Roy S; Schöneich C Cell Mol Biol (Noisy-le-grand); 2000 May; 46(3):685-96. PubMed ID: 10872755 [TBL] [Abstract][Full Text] [Related]
19. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Stadtman ER Free Radic Biol Med; 1990; 9(4):315-25. PubMed ID: 2283087 [TBL] [Abstract][Full Text] [Related]
20. 1H NMR, mechanism, and mononuclear oxidative activity of the antibiotic metallopeptide bacitracin: the role of D-Glu-4, interaction with pyrophosphate moiety, DNA binding and cleavage, and bioactivity. Tay WM; Epperson JD; da Silva GF; Ming LJ J Am Chem Soc; 2010 Apr; 132(16):5652-61. PubMed ID: 20359222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]