These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1657974)

  • 21. Glucose-, calcium- and concentration-dependence of acetylcholine stimulation of insulin release and ionic fluxes in mouse islets.
    Garcia MC; Hermans MP; Henquin JC
    Biochem J; 1988 Aug; 254(1):211-8. PubMed ID: 3052430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vasoactive intestinal polypeptide-augmented insulin release: actions on ionic fluxes and electrical activity of mouse islets.
    Wahl MA; Straub SG; Ammon HP
    Diabetologia; 1993 Oct; 36(10):920-5. PubMed ID: 8243870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms underlying the insulinostatic effect of peptide YY in mouse pancreatic islets.
    Nieuwenhuizen AG; Karlsson S; Fridolf T; Ahrén B
    Diabetologia; 1994 Sep; 37(9):871-8. PubMed ID: 7806016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcitonin gene-related peptide inhibits insulin secretion studies on ion fluxes and cyclic AMP in isolated rat islets.
    Pettersson M; Ahrén B
    Diabetes Res; 1990 Sep; 15(1):9-14. PubMed ID: 1966731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of extracellular phosphate on Ca2+ and K+ fluxes in pancreatic islets.
    Lebrun P; Malaisse WJ; Herchuelz A
    J Endocrinol Invest; 1984 Feb; 7(1):15-9. PubMed ID: 6371115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Na+--K+ pump activity and the glucose-stimulated Ca2+-sensitive K+ permeability in the pancreatic B-cell.
    Lebrun P; Malaisse WJ; Herchuelz A
    J Membr Biol; 1983; 74(1):67-73. PubMed ID: 6306246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is there a role for osmotic events in the exocytotic release of insulin?
    Hermans MP; Henquin JC
    Endocrinology; 1986 Jul; 119(1):105-11. PubMed ID: 3522206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sparteine increases insulin release by decreasing the K+ permeability of the B-cell membrane.
    Paolisso G; Nenquin M; Schmeer W; Mathot F; Meissner HP; Henquin JC
    Biochem Pharmacol; 1985 Jul; 34(13):2355-61. PubMed ID: 3893438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly potent and stereoselective effects of the benzoic acid derivative AZ-DF 265 on pancreatic beta-cells.
    Garrino MG; Henquin JC
    Br J Pharmacol; 1988 Jan; 93(1):61-8. PubMed ID: 3280060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct effects of acetylcholine and glucose on 45calcium and 86rubidium efflux from mouse pancreatic islets.
    Nenquin M; Awouters P; Mathot F; Henquin JC
    FEBS Lett; 1984 Oct; 176(2):457-61. PubMed ID: 6386527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct mechanisms for two amplification systems of insulin release.
    Henquin JC; Bozem M; Schmeer W; Nenquin M
    Biochem J; 1987 Sep; 246(2):393-9. PubMed ID: 2825637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic B-cells.
    Henquin JC; Schmeer W; Nenquin M; Meissner HP
    Biochem Biophys Res Commun; 1985 Sep; 131(2):980-6. PubMed ID: 3902016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of cesium chloride on insulin release, ionic fluxes and membrane potential in pancreatic B-cells.
    Paolisso G; Nenquin M; Meissner HP; Henquin JC
    Biochim Biophys Acta; 1985 Feb; 844(2):200-8. PubMed ID: 3882155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells.
    Hermans MP; Schmeer W; Henquin JC
    Endocrinology; 1987 May; 120(5):1765-73. PubMed ID: 3552623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for calcium in the breakdown of inositol phospholipids in intact and digitonin-permeabilized pancreatic islets.
    Best L
    Biochem J; 1986 Sep; 238(3):773-9. PubMed ID: 3541917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B cells.
    Henquin JC; Meissner HP
    Biochem Biophys Res Commun; 1983 Apr; 112(2):614-20. PubMed ID: 6303325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of trifluoperazine and pimozide on stimulus-secretion coupling in pancreatic B-cells. Suggestion for a role of calmodulin?
    Henquin JC
    Biochem J; 1981 Jun; 196(3):771-80. PubMed ID: 6274321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Possible involvement of a tyrosine kinase-dependent pathway in the regulation of phosphoinositide metabolism by vanadate in normal mouse islets.
    Jonas JC; Henquin JC
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):49-55. PubMed ID: 8670131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abnormalities in glucose-stimulated insulin release, 45Ca uptake, and 86Rb efflux in diabetic Chinese hamster islets.
    Frankel BJ; Sehlin J
    Diabetes; 1987 May; 36(5):648-53. PubMed ID: 3552797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Ca2+ in secretagogue-stimulated breakdown of phosphatidylinositol in rat pancreatic islets.
    Axen KV; Schubart UK; Blake AD; Fleischer N
    J Clin Invest; 1983 Jul; 72(1):13-21. PubMed ID: 6192142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.