BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16579792)

  • 1. Destabilizing missense mutations in the tumour suppressor protein p53 enhance its ubiquitination in vitro and in vivo.
    Shimizu H; Saliba D; Wallace M; Finlan L; Langridge-Smith PR; Hupp TR
    Biochem J; 2006 Jul; 397(2):355-67. PubMed ID: 16579792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo.
    Shimizu H; Burch LR; Smith AJ; Dornan D; Wallace M; Ball KL; Hupp TR
    J Biol Chem; 2002 Aug; 277(32):28446-58. PubMed ID: 11925449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-site regulation of MDM2 E3-ubiquitin ligase activity.
    Wallace M; Worrall E; Pettersson S; Hupp TR; Ball KL
    Mol Cell; 2006 Jul; 23(2):251-63. PubMed ID: 16857591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination.
    Nie L; Sasaki M; Maki CG
    J Biol Chem; 2007 May; 282(19):14616-25. PubMed ID: 17371868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant p53 Sequestration of the MDM2 Acidic Domain Inhibits E3 Ligase Activity.
    Yang L; Song T; Cheng Q; Chen L; Chen J
    Mol Cell Biol; 2019 Feb; 39(4):. PubMed ID: 30455251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis.
    Fraser JA; Worrall EG; Lin Y; Landre V; Pettersson S; Blackburn E; Walkinshaw M; Muller P; Vojtesek B; Ball K; Hupp TR
    J Mol Biol; 2015 Apr; 427(8):1728-47. PubMed ID: 25543083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation.
    Sasaki M; Nie L; Maki CG
    J Biol Chem; 2007 May; 282(19):14626-34. PubMed ID: 17363365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.
    Honda R; Yasuda H
    EMBO J; 1999 Jan; 18(1):22-7. PubMed ID: 9878046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-binding regulates site-specific ubiquitination of IRF-1.
    Landré V; Pion E; Narayan V; Xirodimas DP; Ball KL
    Biochem J; 2013 Feb; 449(3):707-17. PubMed ID: 23134341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation.
    Rodriguez MS; Desterro JM; Lain S; Lane DP; Hay RT
    Mol Cell Biol; 2000 Nov; 20(22):8458-67. PubMed ID: 11046142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel p53 phosphorylation site within the MDM2 ubiquitination signal: II. a model in which phosphorylation at SER269 induces a mutant conformation to p53.
    Fraser JA; Madhumalar A; Blackburn E; Bramham J; Walkinshaw MD; Verma C; Hupp TR
    J Biol Chem; 2010 Nov; 285(48):37773-86. PubMed ID: 20847049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2.
    Pettersson S; Kelleher M; Pion E; Wallace M; Ball KL
    Biochem J; 2009 Mar; 418(3):575-85. PubMed ID: 19032150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members.
    Craig AL; Chrystal JA; Fraser JA; Sphyris N; Lin Y; Harrison BJ; Scott MT; Dornreiter I; Hupp TR
    Mol Cell Biol; 2007 May; 27(9):3542-55. PubMed ID: 17339337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitination of p53 at multiple sites in the DNA-binding domain.
    Chan WM; Mak MC; Fung TK; Lau A; Siu WY; Poon RY
    Mol Cancer Res; 2006 Jan; 4(1):15-25. PubMed ID: 16446403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Nuclear import of p53 in relation to MDM2-mediated degradation and ubiquitination].
    Li HP; Zhang YP
    Zhonghua Zhong Liu Za Zhi; 2005 Feb; 27(2):86-9. PubMed ID: 15946545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of phosphomimetic lid mutation on the thermostability of the N-terminal domain of MDM2.
    Worrall EG; Worrall L; Blackburn E; Walkinshaw M; Hupp TR
    J Mol Biol; 2010 May; 398(3):414-28. PubMed ID: 20303977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of p53 degradation by Mdm2 acetylation.
    Wang X; Taplick J; Geva N; Oren M
    FEBS Lett; 2004 Mar; 561(1-3):195-201. PubMed ID: 15013777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination.
    Ma J; Martin JD; Zhang H; Auger KR; Ho TF; Kirkpatrick RB; Grooms MH; Johanson KO; Tummino PJ; Copeland RA; Lai Z
    Biochemistry; 2006 Aug; 45(30):9238-45. PubMed ID: 16866370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53 ubiquitination: Mdm2 and beyond.
    Brooks CL; Gu W
    Mol Cell; 2006 Feb; 21(3):307-15. PubMed ID: 16455486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation.
    Lindström MS; Jin A; Deisenroth C; White Wolf G; Zhang Y
    Mol Cell Biol; 2007 Feb; 27(3):1056-68. PubMed ID: 17116689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.