These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16580169)

  • 1. Kinetics of photooxidation of papaverine hydrochloride and its major photooxidation products.
    Piotrowska K; Hermann TW; Augustyniak W
    J Pharm Biomed Anal; 2006 Jun; 41(4):1391-5. PubMed ID: 16580169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation and degradation products of papaverine. Part II[1]: investigations on the photochemical degradation of papaverine solutions.
    Girreser U; Hermann TW; Piotrowska K
    Arch Pharm (Weinheim); 2003 Sep; 336(9):401-5. PubMed ID: 14528487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photooxidation of papaverine, papaverinol and papaveraldine in their chloroform solutions.
    Piotrowska K; Hermann TW; Augustyniak W
    Acta Pol Pharm; 2002; 59(5):359-64. PubMed ID: 12602797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photostabilization of papaverine hydrochloride solutions.
    Piotrowska K; Hermann TW; Pawelska A
    Acta Pol Pharm; 2010; 67(4):321-6. PubMed ID: 20635526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biopharmaceutical characterization of some new papaverine decomposition products.
    Czyrski A; Hermann T; Rubiś B; Rybczyńska M; Sledź D
    Pharmazie; 2011 Mar; 66(3):165-7. PubMed ID: 21553644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of drug decomposition. Part 46. Photooxidation and photolysis of some perazine derivatives.
    Pawelczyk E; Marciniec B
    Pol J Pharmacol Pharm; 1977; 29(2):137-42. PubMed ID: 16254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations.
    Amin AS; El-Sheikh R; Zahran F; Gouda AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1088-93. PubMed ID: 17092767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation and degradation products of papaverine. Part I: Gadamer and Schulemann's papaverinol synthesis revisited.
    Hermann TW; Girreser U; Michalski P; Piotrowska K
    Arch Pharm (Weinheim); 2002 Apr; 335(4):167-9. PubMed ID: 12112037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalysis by tetraphenylporphyrin of the decomposition of chloroform.
    Muñoz Z; Cohen AS; Nguyen LM; McIntosh TA; Hoggard PE
    Photochem Photobiol Sci; 2008 Mar; 7(3):337-43. PubMed ID: 18389151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic study and G-quadruplex DNA binding affinity of two bioactive papaverine-derived ligands.
    Galezowska E; Masternak A; Rubis B; Czyrski A; Rybczyńska M; Hermann TW; Juskowiak B
    Int J Biol Macromol; 2007 Dec; 41(5):558-63. PubMed ID: 17719085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [HPLC separation of papaverine hydrochloride and its degradation products papaveraldine and papaverinol. Quantitative determination in vials and granules].
    Maurich V; Moneghini M
    Boll Chim Farm; 1983 Jul; 122(7):322-9. PubMed ID: 6651970
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of temperature and initial dibutyl sulfide concentration in chloroform on its oxidation rate by ozone.
    Popiel S; Nalepa T; Dzierzak D; Stankiewicz R; Witkiewicz Z
    J Hazard Mater; 2008 Sep; 157(2-3):319-27. PubMed ID: 18291579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Contribution to the stability of papaverine. Part 2: Quantitative determination of papaverine in the presence of degradation products (author's transl)].
    Pohloudek-Fabini R; Gundermann P
    Pharmazie; 1979; 34(2):75-6. PubMed ID: 441109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Drug decomposition kinetics. XLIX. Kinetics of auto-oxidation of drotaverine hydrochloride in the solid phase].
    Pawełczyk E; Opielewicz M
    Acta Pol Pharm; 1978; 35(3):311-9. PubMed ID: 696363
    [No Abstract]   [Full Text] [Related]  

  • 15. Photooxidation of pterin in aqueous solutions: biological and biomedical implications.
    Cabrerizo FM; Dántola ML; Thomas AH; Lorente C; Braun AM; Oliveros E; Capparelli AL
    Chem Biodivers; 2004 Nov; 1(11):1800-11. PubMed ID: 17191817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitized oxidations of substituted pyrroles: unanticipated radical-derived oxygenated products.
    Alberti MN; Vougioukalakis GC; Orfanopoulos M
    J Org Chem; 2009 Oct; 74(19):7274-82. PubMed ID: 19739608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical decomposition of phenazone derivatives. Part 7: Mechanism of decomposition in aqueous solutions.
    Marciniec B
    Pharmazie; 1985 Mar; 40(3):180-2. PubMed ID: 4023033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous oxidation of aqueous solutions of atrazine and fenitrothion through dark and photo-Fenton reactions.
    Kassinos D; Varnava N; Michael C; Piera P
    Chemosphere; 2009 Feb; 74(6):866-72. PubMed ID: 19027929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue.
    Niles JC; Wishnok JS; Tannenbaum SR
    Org Lett; 2001 Apr; 3(7):963-6. PubMed ID: 11277770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial transformation of papaveraldine.
    El Sayed KA
    Phytochemistry; 2000 Mar; 53(6):675-8. PubMed ID: 10746880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.