These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 16580597)
1. Immunomics: discovering new targets for vaccines and therapeutics. De Groot AS Drug Discov Today; 2006 Mar; 11(5-6):203-9. PubMed ID: 16580597 [TBL] [Abstract][Full Text] [Related]
2. From immunome to vaccine: epitope mapping and vaccine design tools. De Groot AS; Martin W Novartis Found Symp; 2003; 254():57-72; discussion 72-6, 98-101, 250-2. PubMed ID: 14712932 [TBL] [Abstract][Full Text] [Related]
4. New tools, new approaches and new ideas for vaccine development. De Groot AS; Moise L Expert Rev Vaccines; 2007 Apr; 6(2):125-7. PubMed ID: 17408360 [No Abstract] [Full Text] [Related]
5. Mining the Leishmania genome for novel antigens and vaccine candidates. Herrera-Najera C; Piña-Aguilar R; Xacur-Garcia F; Ramirez-Sierra MJ; Dumonteil E Proteomics; 2009 Mar; 9(5):1293-301. PubMed ID: 19206109 [TBL] [Abstract][Full Text] [Related]
6. T-Cell epitope discovery for variola and vaccinia viruses. Kennedy R; Poland GA Rev Med Virol; 2007; 17(2):93-113. PubMed ID: 17195963 [TBL] [Abstract][Full Text] [Related]
7. [Prediction for helper T cell epitopes and its application in vaccine development against parasite infection]. Shao DH; Feng XG Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2008 Jun; 26(3):228-33. PubMed ID: 19160972 [TBL] [Abstract][Full Text] [Related]
8. Bioinformatics for study of autoimmunity. Petrovsky N; Brusic V Autoimmunity; 2006 Dec; 39(8):635-43. PubMed ID: 17178560 [TBL] [Abstract][Full Text] [Related]
9. Harnessing bioinformatics to discover new vaccines. Davies MN; Flower DR Drug Discov Today; 2007 May; 12(9-10):389-95. PubMed ID: 17467575 [TBL] [Abstract][Full Text] [Related]
10. Prediction of immunogenicity for therapeutic proteins: state of the art. De Groot AS; Moise L Curr Opin Drug Discov Devel; 2007 May; 10(3):332-40. PubMed ID: 17554860 [TBL] [Abstract][Full Text] [Related]
11. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
12. Immunomics: a 21st century approach to vaccine development for complex pathogens. De Sousa KP; Doolan DL Parasitology; 2016 Feb; 143(2):236-44. PubMed ID: 26864136 [TBL] [Abstract][Full Text] [Related]
13. T cell epitope identification for bovine vaccines: an epitope mapping method for BoLA A-11. De Groot AS; Nene V; Hegde NR; Srikumaran S; Rayner J; Martin W Int J Parasitol; 2003 May; 33(5-6):641-53. PubMed ID: 12782061 [TBL] [Abstract][Full Text] [Related]
14. The validity of predicted T-cell epitopes. Lundegaard C; Nielsen M; Lund O Trends Biotechnol; 2006 Dec; 24(12):537-8. PubMed ID: 17045685 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary deimmunization: an ancillary mechanism for self-tolerance? De Groot AS; Goldberg M; Moise L; Martin W Cell Immunol; 2006 Dec; 244(2):148-53. PubMed ID: 17445787 [TBL] [Abstract][Full Text] [Related]
16. T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects. Tordesillas L; Cuesta-Herranz J; Gonzalez-Muñoz M; Pacios LF; Compés E; Garcia-Carrasco B; Sanchez-Monge R; Salcedo G; Diaz-Perales A Mol Immunol; 2009 Feb; 46(4):722-8. PubMed ID: 19054565 [TBL] [Abstract][Full Text] [Related]
17. Are bacterial vaccine antigens T-cell epitope depleted? Halling-Brown M; Sansom CE; Davies M; Titball RW; Moss DS Trends Immunol; 2008 Aug; 29(8):374-9. PubMed ID: 18603471 [TBL] [Abstract][Full Text] [Related]
18. From functional genomics to functional immunomics: new challenges, old problems, big rewards. Braga-Neto UM; Marques ET PLoS Comput Biol; 2006 Jul; 2(7):e81. PubMed ID: 16863395 [TBL] [Abstract][Full Text] [Related]