BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16580776)

  • 1. Oxidative status of valinomycin-resistant normal, beta-thalassemia and sickle red blood cells.
    Amer J; Etzion Z; Bookchin RM; Fibach E
    Biochim Biophys Acta; 2006 May; 1760(5):793-9. PubMed ID: 16580776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells.
    Bookchin RM; Etzion Z; Sorette M; Mohandas N; Skepper JN; Lew VL
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):8045-50. PubMed ID: 10859357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative status of platelets in normal and thalassemic blood.
    Amer J; Fibach E
    Thromb Haemost; 2004 Nov; 92(5):1052-9. PubMed ID: 15543333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of oxidative stress on red blood cell rheology in sickle cell patients.
    Hierso R; Waltz X; Mora P; Romana M; Lemonne N; Connes P; Hardy-Dessources MD
    Br J Haematol; 2014 Aug; 166(4):601-6. PubMed ID: 24754710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amelioration of oxidative stress in red blood cells from patients with beta-thalassemia major and intermedia and E-beta-thalassemia following administration of a fermented papaya preparation.
    Fibach E; Tan ES; Jamuar S; Ng I; Amer J; Rachmilewitz EA
    Phytother Res; 2010 Sep; 24(9):1334-8. PubMed ID: 20127662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells.
    Amer J; Goldfarb A; Fibach E
    Cytometry A; 2004 Jul; 60(1):73-80. PubMed ID: 15229859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inborn defects in the antioxidant systems of human red blood cells.
    van Zwieten R; Verhoeven AJ; Roos D
    Free Radic Biol Med; 2014 Feb; 67():377-86. PubMed ID: 24316370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermented papaya preparation as redox regulator in blood cells of beta-thalassemic mice and patients.
    Amer J; Goldfarb A; Rachmilewitz EA; Fibach E
    Phytother Res; 2008 Jun; 22(6):820-8. PubMed ID: 18384199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants.
    Amer J; Ghoti H; Rachmilewitz E; Koren A; Levin C; Fibach E
    Br J Haematol; 2006 Jan; 132(1):108-13. PubMed ID: 16371026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells.
    Amer J; Atlas D; Fibach E
    Biochim Biophys Acta; 2008 Feb; 1780(2):249-55. PubMed ID: 18082636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid composition and organization in model beta-thalassemic erythrocytes.
    Kuypers FA; Schott MA; Scott MD
    Am J Hematol; 1996 Jan; 51(1):45-54. PubMed ID: 8571937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H2O2 injury in beta thalassemic erythrocytes: protective role of catalase and the prooxidant effects of GSH.
    Scott MD
    Free Radic Biol Med; 2006 Apr; 40(7):1264-72. PubMed ID: 16545695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2.
    Srinoun K; Sathirapongsasuti N; Paiboonsukwong K; Sretrirutchai S; Wongchanchailert M; Fucharoen S
    Ann Hematol; 2019 Sep; 98(9):2045-2052. PubMed ID: 31243572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythrocytes anion transport and oxidative change in beta-thalassaemias.
    Maria C; Leonardo R; Pietro R; Mario V; Isabella V; Diana T
    Cell Biol Int; 2010 May; 34(6):655-62. PubMed ID: 20450494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent sickle cell anemia and alpha-thalassemia. Effect on pathological properties of sickle erythrocytes.
    Embury SH; Clark MR; Monroy G; Mohandas N
    J Clin Invest; 1984 Jan; 73(1):116-23. PubMed ID: 6690472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mouse model to study thrombotic complications of thalassemia.
    Kalish Y; Malyutin Z; Shai E; Dana M; Avraham L; Jahshan N; Rachmilewitz E; Fibach E; Varon D
    Thromb Res; 2015 Mar; 135(3):521-5. PubMed ID: 25613926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell membrane and density changes under ambient and hypoxic conditions in transgenic mice producing human sickle hemoglobin.
    Reilly MP; Chomo MJ; Obata K; Asakura T
    Exp Hematol; 1994 Jun; 22(6):501-9. PubMed ID: 8187846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High red blood cell nitric oxide synthase activation is not associated with improved vascular function and red blood cell deformability in sickle cell anaemia.
    Grau M; Mozar A; Charlot K; Lamarre Y; Weyel L; Suhr F; Collins B; Jumet S; Hardy-Dessources MD; Romana M; Lemonne N; Etienne-Julan M; Antoine-Jonville S; Bloch W; Connes P
    Br J Haematol; 2015 Mar; 168(5):728-36. PubMed ID: 25316332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of erythroid cells redox status reveals the involvement of Prdx1 and Prdx2 in the severity of beta thalassemia.
    Romanello KS; Teixeira KKL; Silva JPMO; Nagamatsu ST; Bezerra MAC; Domingos IF; Martins DAP; Araujo AS; Lanaro C; Breyer CA; Ferreira RA; Franco-Penteado C; Costa FF; Malavazi I; Netto LES; de Oliveira MA; Cunha AF
    PLoS One; 2018; 13(12):e0208316. PubMed ID: 30521599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.