BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16581023)

  • 1. Leucine-induced activation of translational initiation is partly regulated by the branched-chain alpha-keto acid dehydrogenase complex in C2C12 cells.
    Nakai N; Shimomura Y; Tamura T; Tamura N; Hamada K; Kawano F; Ohira Y
    Biochem Biophys Res Commun; 2006 May; 343(4):1244-50. PubMed ID: 16581023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of hepatic branched-chain alpha-keto acid dehydrogenase complex by tumor necrosis factor-alpha in rats.
    Shiraki M; Shimomura Y; Miwa Y; Fukushima H; Murakami T; Tamura T; Tamura N; Moriwaki H
    Biochem Biophys Res Commun; 2005 Mar; 328(4):973-8. PubMed ID: 15707973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clofibrate treatment promotes branched-chain amino acid catabolism and decreases the phosphorylation state of mTOR, eIF4E-BP1, and S6K1 in rat liver.
    Ishiguro H; Katano Y; Nakano I; Ishigami M; Hayashi K; Honda T; Goto H; Bajotto G; Maeda K; Shimomura Y
    Life Sci; 2006 Jul; 79(8):737-43. PubMed ID: 16616211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simvastatin increases liver branched-chain α-ketoacid dehydrogenase activity in rats fed with low protein diet.
    Knapik-Czajka M
    Toxicology; 2014 Nov; 325():107-14. PubMed ID: 25193403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR.
    Lynch CJ; Halle B; Fujii H; Vary TC; Wallin R; Damuni Z; Hutson SM
    Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E854-63. PubMed ID: 12812918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adverse effect of fenofibrate on branched-chain alpha-ketoacid dehydrogenase complex in rat's liver.
    Knapik-Czajka M; Gozdzialska A; Jaskiewicz J
    Toxicology; 2009 Dec; 266(1-3):1-5. PubMed ID: 19819289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus.
    Kuzuya T; Katano Y; Nakano I; Hirooka Y; Itoh A; Ishigami M; Hayashi K; Honda T; Goto H; Fujita Y; Shikano R; Muramatsu Y; Bajotto G; Tamura T; Tamura N; Shimomura Y
    Biochem Biophys Res Commun; 2008 Aug; 373(1):94-8. PubMed ID: 18541149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of liver failure on branched-chain alpha-keto acid dehydrogenase complex in rat liver and muscle: comparison between acute and chronic liver failure.
    Honda T; Fukuda Y; Nakano I; Katano Y; Goto H; Nagasaki M; Sato Y; Murakami T; Shimomura Y
    J Hepatol; 2004 Mar; 40(3):439-45. PubMed ID: 15123358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of rat liver branched-chain alpha-keto acid dehydrogenase activity by low doses of bezafibrate.
    Knapik-Czajka M
    Toxicology; 2013 Apr; 306():101-7. PubMed ID: 23485652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutritional regulation of the protein kinases responsible for the phosphorylation of the alpha-ketoacid dehydrogenase complexes.
    Harris RA; Popov KM; Zhao Y
    J Nutr; 1995 Jun; 125(6 Suppl):1758S-1761S. PubMed ID: 7782941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine stimulates HGF production by hepatic stellate cells through mTOR pathway.
    Tomiya T; Nishikawa T; Inoue Y; Ohtomo N; Ikeda H; Tejima K; Watanabe N; Tanoue Y; Omata M; Fujiwara K
    Biochem Biophys Res Commun; 2007 Jun; 358(1):176-80. PubMed ID: 17466941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of activation of branched-chain alpha-keto acid dehydrogenase complex by exercise.
    Xu M; Nagasaki M; Obayashi M; Sato Y; Tamura T; Shimomura Y
    Biochem Biophys Res Commun; 2001 Sep; 287(3):752-6. PubMed ID: 11563860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Gene analysis of maple syrup urine disease (MSUD)].
    Mitsubuchi H; Nobukuni Y; Hayashida Y; Ohta K; Indo Y; Akaboshi I; Endo F; Matsuda I
    Rinsho Byori; 1993 May; 41(5):484-91. PubMed ID: 8350511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice.
    Joshi MA; Jeoung NH; Obayashi M; Hattab EM; Brocken EG; Liechty EA; Kubek MJ; Vattem KM; Wek RC; Harris RA
    Biochem J; 2006 Nov; 400(1):153-62. PubMed ID: 16875466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered kinetic properties of the branched-chain alpha-keto acid dehydrogenase complex due to mutation of the beta-subunit of the branched-chain alpha-keto acid decarboxylase (E1) component in lymphoblastoid cells derived from patients with maple syrup urine disease.
    Indo Y; Kitano A; Endo F; Akaboshi I; Matsuda I
    J Clin Invest; 1987 Jul; 80(1):63-70. PubMed ID: 3597778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In human endothelial cells amino acids inhibit insulin-induced Akt and ERK1/2 phosphorylation by an mTOR-dependent mechanism.
    Pellegatta F; Catapano AL; Luzi L; Terruzzi I
    J Cardiovasc Pharmacol; 2006 May; 47(5):643-9. PubMed ID: 16775502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin signaling in vascular endothelial cells: a key role for heterotrimeric G proteins revealed by siRNA-mediated Gbeta1 knockdown.
    Chen H; Michel T
    Biochemistry; 2006 Jul; 45(26):8023-33. PubMed ID: 16800627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus.
    Bajotto G; Murakami T; Nagasaki M; Sato Y; Shimomura Y
    Metabolism; 2009 Oct; 58(10):1489-95. PubMed ID: 19586643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation.
    Webb LA; Sadri H; von Soosten D; Dänicke S; Egert S; Stehle P; Sauerwein H
    J Dairy Sci; 2019 Apr; 102(4):3556-3568. PubMed ID: 30712942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucine induces phosphorylation and activation of p70S6K in cortical neurons via the system L amino acid transporter.
    Ishizuka Y; Kakiya N; Nawa H; Takei N
    J Neurochem; 2008 Jul; 106(2):934-42. PubMed ID: 18435829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.