BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16581024)

  • 1. Interaction-based evaluation of the propensity for amyloid formation with cross-beta structure.
    Saiki M; Konakahara T; Morii H
    Biochem Biophys Res Commun; 2006 May; 343(4):1262-71. PubMed ID: 16581024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains.
    Saiki M; Honda S; Kawasaki K; Zhou D; Kaito A; Konakahara T; Morii H
    J Mol Biol; 2005 May; 348(4):983-98. PubMed ID: 15843028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core.
    Haspel N; Zanuy D; Ma B; Wolfson H; Nussinov R
    J Mol Biol; 2005 Feb; 345(5):1213-27. PubMed ID: 15644216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cylinder-shaped double ribbon structure formed by an amyloid hairpin peptide derived from the beta-sheet of murine PrP: an X-ray and molecular dynamics simulation study.
    Croixmarie V; Briki F; David G; Coïc YM; Ovtracht L; Doucet J; Jamin N; Sanson A
    J Struct Biol; 2005 Jun; 150(3):284-99. PubMed ID: 15890277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core.
    Wasmer C; Lange A; Van Melckebeke H; Siemer AB; Riek R; Meier BH
    Science; 2008 Mar; 319(5869):1523-6. PubMed ID: 18339938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy.
    Ippel JH; Olofsson A; Schleucher J; Lundgren E; Wijmenga SS
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8648-53. PubMed ID: 12072564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure.
    Lei H; Wu C; Wang Z; Duan Y
    J Mol Biol; 2006 Mar; 356(4):1049-63. PubMed ID: 16403526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical unbinding of abeta peptides from amyloid fibrils.
    Raman EP; Takeda T; Barsegov V; Klimov DK
    J Mol Biol; 2007 Oct; 373(3):785-800. PubMed ID: 17868685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helix-turn-helix peptides that form alpha-helical fibrils: turn sequences drive fibril structure.
    Lazar KL; Miller-Auer H; Getz GS; Orgel JP; Meredith SC
    Biochemistry; 2005 Sep; 44(38):12681-9. PubMed ID: 16171382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations.
    Mo Y; Lu Y; Wei G; Derreumaux P
    J Chem Phys; 2009 Mar; 130(12):125101. PubMed ID: 19334894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A twisted four-sheeted model for an amyloid fibril.
    Wang J; Gülich S; Bradford C; Ramirez-Alvarado M; Regan L
    Structure; 2005 Sep; 13(9):1279-88. PubMed ID: 16154085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments.
    Ivanova MI; Thompson MJ; Eisenberg D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4079-82. PubMed ID: 16537488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family.
    Iconomidou VA; Chryssikos GD; Gionis V; Galanis AS; Cordopatis P; Hoenger A; Hamodrakas SJ
    J Struct Biol; 2006 Dec; 156(3):480-8. PubMed ID: 17056273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid-forming propensity of the hydrophobic non-natural amino acid on the fibril-forming core peptide of human tau.
    Hirata A; Sugimoto K; Konno T; Morii T
    Bioorg Med Chem Lett; 2007 Jun; 17(11):2971-4. PubMed ID: 17416523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular alignment within beta-sheets in Abeta(14-23) fibrils: solid-state NMR experiments and theoretical predictions.
    Bu Z; Shi Y; Callaway DJ; Tycko R
    Biophys J; 2007 Jan; 92(2):594-602. PubMed ID: 17056725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.
    Lee SW; Mou Y; Lin SY; Chou FC; Tseng WH; Chen CH; Lu CY; Yu SS; Chan JC
    J Mol Biol; 2008 May; 378(5):1142-54. PubMed ID: 18423487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation.
    Takahashi T; Mihara H
    Acc Chem Res; 2008 Oct; 41(10):1309-18. PubMed ID: 18937396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis.
    Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ
    J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural models of amyloid-like fibrils.
    Nelson R; Eisenberg D
    Adv Protein Chem; 2006; 73():235-82. PubMed ID: 17190616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.