BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16581024)

  • 21. De novo design of a two-stranded coiled-coil switch peptide.
    Kammerer RA; Steinmetz MO
    J Struct Biol; 2006 Aug; 155(2):146-53. PubMed ID: 16806970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Switch-peptides: design and characterization of controllable super-amyloid-forming host-guest peptides as tools for identifying anti-amyloid agents.
    Camus MS; Dos Santos S; Chandravarkar A; Mandal B; Schmid AW; Tuchscherer G; Mutter M; Lashuel HA
    Chembiochem; 2008 Sep; 9(13):2104-12. PubMed ID: 18683159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
    Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A
    J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy.
    Margittai M; Langen R
    Q Rev Biophys; 2008; 41(3-4):265-97. PubMed ID: 19079806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II.
    Legge FS; Treutlein H; Howlett GJ; Yarovsky I
    Biophys Chem; 2007 Nov; 130(3):102-13. PubMed ID: 17825978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Competition between folding, native-state dimerisation and amyloid aggregation in beta-lactoglobulin.
    Hamada D; Tanaka T; Tartaglia GG; Pawar A; Vendruscolo M; Kawamura M; Tamura A; Tanaka N; Dobson CM
    J Mol Biol; 2009 Feb; 386(3):878-90. PubMed ID: 19133274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A partially structured region of a largely unstructured protein, Plasmodium falciparum merozoite surface protein 2 (MSP2), forms amyloid-like fibrils.
    Yang X; Adda CG; Keizer DW; Murphy VJ; Rizkalla MM; Perugini MA; Jackson DC; Anders RF; Norton RS
    J Pept Sci; 2007 Dec; 13(12):839-48. PubMed ID: 17883245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence.
    Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent atomic models of amyloid fibril structure.
    Nelson R; Eisenberg D
    Curr Opin Struct Biol; 2006 Apr; 16(2):260-5. PubMed ID: 16563741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociation of Abeta(16-22) amyloid fibrils probed by molecular dynamics.
    Takeda T; Klimov DK
    J Mol Biol; 2007 May; 368(4):1202-13. PubMed ID: 17382346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways.
    El Moustaine D; Perrier V; Smeller L; Lange R; Torrent J
    FEBS J; 2008 May; 275(9):2021-31. PubMed ID: 18355314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of beta-sheet propensity on peptide aggregation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Apr; 130(14):145103. PubMed ID: 19368476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins.
    Tompa P
    FEBS J; 2009 Oct; 276(19):5406-15. PubMed ID: 19712107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of hydrophobic clusters in the stability of alpha-helical coiled coils and their conversion to amyloid-like beta-sheets.
    Dong H; Hartgerink JD
    Biomacromolecules; 2007 Feb; 8(2):617-23. PubMed ID: 17291085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations.
    Wu C; Wang Z; Lei H; Zhang W; Duan Y
    J Am Chem Soc; 2007 Feb; 129(5):1225-32. PubMed ID: 17263405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directing the secondary structure of polypeptides at will: from helices to amyloids and back again?
    Pagel K; Vagt T; Koksch B
    Org Biomol Chem; 2005 Nov; 3(21):3843-50. PubMed ID: 16239998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool.
    Gazit E
    FEBS J; 2005 Dec; 272(23):5971-8. PubMed ID: 16302962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides.
    Schlenzig D; Manhart S; Cinar Y; Kleinschmidt M; Hause G; Willbold D; Funke SA; Schilling S; Demuth HU
    Biochemistry; 2009 Jul; 48(29):7072-8. PubMed ID: 19518051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies.
    Langedijk JP; Fuentes G; Boshuizen R; Bonvin AM
    J Mol Biol; 2006 Jul; 360(4):907-20. PubMed ID: 16782127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.