These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16581284)

  • 1. Computational fluid dynamics modeling of insertion and advancement of a reamer into the intramedullary canal of a long bone.
    Gaber O; Behdinan K; de Beer J; Zalzal P; Papini M; Saghir MZ
    Med Eng Phys; 2007 Jan; 29(1):125-33. PubMed ID: 16581284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading.
    Cheung G; Zalzal P; Bhandari M; Spelt JK; Papini M
    Med Eng Phys; 2004 Mar; 26(2):93-108. PubMed ID: 15036177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of a one-step reamer-irrigator-aspirator technique on the intramedullary pressure in the pig femur.
    Husebye EE; Lyberg T; Madsen JE; Eriksen M; Røise O
    Injury; 2006 Oct; 37(10):935-40. PubMed ID: 16934266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro biomechanical evaluation of antegrade femoral nailing at early and late postoperative stages.
    Montanini R; Filardi V
    Med Eng Phys; 2010 Oct; 32(8):889-97. PubMed ID: 20655271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone.
    Fornells P; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1687-98. PubMed ID: 17616819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cadaver model evaluating femoral intramedullary reaming: a comparison between new reamer design (Pressure Sentinel) and a novel suction/irrigation reamer (RIA).
    Goplen G; Wilson JA; McAffrey M; Deluzio K; Leighton R
    Injury; 2010 Nov; 41 Suppl 2():S38-42. PubMed ID: 21144925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of perfusion on soft tissue mechanical properties: a computational model.
    Bilston LE
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):283-90. PubMed ID: 12186707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental results of intra-osseous pressure in various surgical procedures of the long bones].
    Heim D
    Orthopade; 1995 Apr; 24(2):104-13. PubMed ID: 7753534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramedullary pressure increase and increase in cortical temperature during reaming of the femoral medullary cavity: the effect of draining the medullary contents before reaming.
    Mueller CA; Rahn BA
    J Trauma; 2003 Sep; 55(3):495-503; discussion 503. PubMed ID: 14501893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiological advantages of rinsing-suction-reaming (RSR) in a pig model for intramedullary nailing.
    Schult M; Küchle R; Hofmann A; Schmidt-Bräkling T; Ortmann C; Wassermann E; Schmidhammer R; Redl H; Joist A
    J Orthop Res; 2006 Jun; 24(6):1186-92. PubMed ID: 16649178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The early effects of intramedullary reaming of the femur on bone mineral density; an experimental study in pigs.
    Ellingsen Husebye E; Lyberg T; Madsen JE; Nordsletten L; Røise O
    Scand J Surg; 2009; 98(3):189-94. PubMed ID: 19919926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [3D finite element analysis of bone stress around distally osseointegrated implant for artificial limb attachment].
    Zheng L; Luo J; Wang X; Chen J; Gu Z; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):554-7. PubMed ID: 17713260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical analysis of retrograde intramedullary nail fixation in distal femoral fractures.
    Chen SH; Yu TC; Chang CH; Lu YC
    Knee; 2008 Oct; 15(5):384-9. PubMed ID: 18722126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-specific non-linear biomechanical model of needle insertion into brain.
    Wittek A; Dutta-Roy T; Taylor Z; Horton A; Washio T; Chinzei K; Miller K
    Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):135-46. PubMed ID: 18297493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures.
    Perez A; Mahar A; Negus C; Newton P; Impelluso T
    Med Eng Phys; 2008 Jul; 30(6):755-60. PubMed ID: 17905637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical innovations in medullary reaming: reamer design and intramedullary pressure increase.
    Müller CA; Baumgart F; Wahl D; Perren SM; Pfister U
    J Trauma; 2000 Sep; 49(3):440-5. PubMed ID: 11003320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.