BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 16581790)

  • 41. Isolation and characterization of ribosomes and translation initiation factors from the gram-positive soil bacterium Streptomyces lividans.
    Day JM; Janssen GR
    J Bacteriol; 2004 Oct; 186(20):6864-75. PubMed ID: 15466040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Modification of the 5' End of mRNA Leader Sequence Alters the Set of Initiation Factors Essential for Initiation of Translation].
    Sakharov PA; Sogorin EA; Agalarov SC; Kolb VA
    Mol Biol (Mosk); 2020; 54(3):480-486. PubMed ID: 32492012
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA.
    Yueh A; Schneider RJ
    Genes Dev; 2000 Feb; 14(4):414-21. PubMed ID: 10691734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation.
    Caban K; Gonzalez RL
    Biochimie; 2015 Jul; 114():30-8. PubMed ID: 25882682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells.
    Bohlen J; Fenzl K; Kramer G; Bukau B; Teleman AA
    Mol Cell; 2020 Aug; 79(4):561-574.e5. PubMed ID: 32589966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes.
    Wagner S; Herrmannová A; Hronová V; Gunišová S; Sen ND; Hannan RD; Hinnebusch AG; Shirokikh NE; Preiss T; Valášek LS
    Mol Cell; 2020 Aug; 79(4):546-560.e7. PubMed ID: 32589964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ribosome binding to inosine-substituted mRNAs in the absence of ATP and mRNA factors.
    Seal SN; Schmidt A; Marcus A
    J Biol Chem; 1989 May; 264(13):7363-8. PubMed ID: 2708369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translation initiation: structures, mechanisms and evolution.
    Marintchev A; Wagner G
    Q Rev Biophys; 2004; 37(3-4):197-284. PubMed ID: 16194295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient and Accurate Translation Initiation Directed by TISU Involves RPS3 and RPS10e Binding and Differential Eukaryotic Initiation Factor 1A Regulation.
    Haimov O; Sinvani H; Martin F; Ulitsky I; Emmanuel R; Tamarkin-Ben-Harush A; Vardy A; Dikstein R
    Mol Cell Biol; 2017 Aug; 37(15):. PubMed ID: 28584194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast.
    Choi SK; Lee JH; Zoll WL; Merrick WC; Dever TE
    Science; 1998 Jun; 280(5370):1757-60. PubMed ID: 9624054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic checkpoint at a late step in translation initiation.
    Milon P; Konevega AL; Gualerzi CO; Rodnina MV
    Mol Cell; 2008 Jun; 30(6):712-20. PubMed ID: 18570874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple ribosome binding to the 5'-terminal leader sequence of tobacco mosaic virus RNA. Assembly of an 80S ribosome X mRNA complex at the AUU codon.
    Tyc K; Konarska M; Gross HJ; Filipowicz W
    Eur J Biochem; 1984 May; 140(3):503-11. PubMed ID: 6723646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5' untranslated leader.
    O'Donnell SM; Janssen GR
    J Bacteriol; 2001 Feb; 183(4):1277-83. PubMed ID: 11157940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overview: mechanism of translation initiation in eukaryotes.
    Merrick WC
    Enzyme; 1990; 44(1-4):7-16. PubMed ID: 2133660
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.
    Kahvejian A; Svitkin YV; Sukarieh R; M'Boutchou MN; Sonenberg N
    Genes Dev; 2005 Jan; 19(1):104-13. PubMed ID: 15630022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ribosomal tethering and clustering as mechanisms for translation initiation.
    Chappell SA; Edelman GM; Mauro VP
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18077-82. PubMed ID: 17110442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free Initiation Factors eIF4A and eIF4B Are Dispensable for Translation Initiation on Uncapped mRNAs.
    Sakharov PA; Agalarov SC
    Biochemistry (Mosc); 2016 Oct; 81(10):1198-1204. PubMed ID: 27908244
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A 5'-terminal phosphate is required for stable ternary complex formation and translation of leaderless mRNA in Escherichia coli.
    Giliberti J; O'Donnell S; Etten WJ; Janssen GR
    RNA; 2012 Mar; 18(3):508-18. PubMed ID: 22291205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Organizing Principles of Eukaryotic Ribosome Recruitment.
    Pelletier J; Sonenberg N
    Annu Rev Biochem; 2019 Jun; 88():307-335. PubMed ID: 31220979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polyamine stimulation of the synthesis of oligopeptide-binding protein (OppA). Involvement of a structural change of the Shine-Dalgarno sequence and the initiation codon aug in oppa mRNA.
    Yoshida M; Meksuriyen D; Kashiwagi K; Kawai G; Igarashi K
    J Biol Chem; 1999 Aug; 274(32):22723-8. PubMed ID: 10428855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.