BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 16582101)

  • 21. Selection of a remote cleavage site by I-tevI, the td intron-encoded endonuclease.
    Bryk M; Belisle M; Mueller JE; Belfort M
    J Mol Biol; 1995 Mar; 247(2):197-210. PubMed ID: 7707369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SegH and Hef: two novel homing endonucleases whose genes replace the mobC and mobE genes in several T4-related phages.
    Sandegren L; Nord D; Sjöberg BM
    Nucleic Acids Res; 2005; 33(19):6203-13. PubMed ID: 16257983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monomeric site-specific nucleases for genome editing.
    Kleinstiver BP; Wolfs JM; Kolaczyk T; Roberts AK; Hu SX; Edgell DR
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8061-6. PubMed ID: 22566637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily.
    Ibryashkina EM; Zakharova MV; Baskunov VB; Bogdanova ES; Nagornykh MO; Den'mukhamedov MM; Melnik BS; Kolinski A; Gront D; Feder M; Solonin AS; Bujnicki JM
    BMC Struct Biol; 2007 Jul; 7():48. PubMed ID: 17626614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI.
    Kleinstiver BP; Fernandes AD; Gloor GB; Edgell DR
    Nucleic Acids Res; 2010 Apr; 38(7):2411-27. PubMed ID: 20061372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical and mutagenic analysis of I-CreII reveals distinct but important roles for both the H-N-H and GIY-YIG motifs.
    Corina LE; Qiu W; Desai A; Herrin DL
    Nucleic Acids Res; 2009 Sep; 37(17):5810-21. PubMed ID: 19651876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression, purification, and biochemical characterization of the intron-encoded endonuclease, I-CreII.
    Kim HH; Corina LE; Suh JK; Herrin DL
    Protein Expr Purif; 2005 Dec; 44(2):162-72. PubMed ID: 16095917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intronless homing: site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns.
    Belle A; Landthaler M; Shub DA
    Genes Dev; 2002 Feb; 16(3):351-62. PubMed ID: 11825876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI.
    Ichiyanagi K; Ishino Y; Ariyoshi M; Komori K; Morikawa K
    J Mol Biol; 2000 Jul; 300(4):889-901. PubMed ID: 10891276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site.
    Mueller JE; Smith D; Bryk M; Belfort M
    EMBO J; 1995 Nov; 14(22):5724-35. PubMed ID: 8521829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folding, DNA recognition, and function of GIY-YIG endonucleases: crystal structures of R.Eco29kI.
    Mak AN; Lambert AR; Stoddard BL
    Structure; 2010 Oct; 18(10):1321-31. PubMed ID: 20800503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intronic GIY-YIG endonuclease gene in the mitochondrial genome of Podospora curvicolla: evidence for mobility.
    Saguez C; Lecellier G; Koll F
    Nucleic Acids Res; 2000 Mar; 28(6):1299-306. PubMed ID: 10684923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of exonucleolytic degradation in group I intron homing in phage T4.
    Huang YJ; Parker MM; Belfort M
    Genetics; 1999 Dec; 153(4):1501-12. PubMed ID: 10581261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate.
    Van Roey P; Waddling CA; Fox KM; Belfort M; Derbyshire V
    EMBO J; 2001 Jul; 20(14):3631-7. PubMed ID: 11447104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs.
    Kleinstiver BP; Wang L; Wolfs JM; Kolaczyk T; McDowell B; Wang X; Schild-Poulter C; Bogdanove AJ; Edgell DR
    G3 (Bethesda); 2014 Apr; 4(6):1155-65. PubMed ID: 24739648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases.
    Lykke-Andersen J; Garrett RA; Kjems J
    EMBO J; 1997 Jun; 16(11):3272-81. PubMed ID: 9214642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the C-terminal DNA-binding/DNA endonuclease region of a group II intron-encoded protein.
    San Filippo J; Lambowitz AM
    J Mol Biol; 2002 Dec; 324(5):933-51. PubMed ID: 12470950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oligomeric structure diversity within the GIY-YIG nuclease family.
    Ibryashkina EM; Sasnauskas G; Solonin AS; Zakharova MV; Siksnys V
    J Mol Biol; 2009 Mar; 387(1):10-6. PubMed ID: 19361436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exon coconversion biases accompanying intron homing: battle of the nucleases.
    Mueller JE; Smith D; Belfort M
    Genes Dev; 1996 Sep; 10(17):2158-66. PubMed ID: 8804310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications.
    Bell-Pedersen D; Quirk S; Clyman J; Belfort M
    Nucleic Acids Res; 1990 Jul; 18(13):3763-70. PubMed ID: 2165250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.