BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 16582506)

  • 1. [Bone disease in multiple myeloma and its mechanism].
    Abe M
    Clin Calcium; 2006 Apr; 16(4):565- 71. PubMed ID: 16582506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone destruction in multiple myeloma.
    Matsumoto T; Abe M
    Ann N Y Acad Sci; 2006 Apr; 1068():319-26. PubMed ID: 16831932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanisms for formation of myeloma bone disease].
    Yata K; Abe M; Matsumoto T
    Clin Calcium; 2008 Apr; 18(4):438-46. PubMed ID: 18379024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-kappaB ligand (RANKL).
    Giuliani N; Colla S; Rizzoli V
    Exp Hematol; 2004 Aug; 32(8):685-91. PubMed ID: 15308315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Update on the pathogenesis of osteolysis in multiple myeloma patients.
    Giuliani N; Colla S; Rizzoli V
    Acta Biomed; 2004 Dec; 75(3):143-52. PubMed ID: 15796087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor activator of NF-kappaB ligand, macrophage inflammatory protein-1alpha, and the proteasome: novel therapeutic targets in myeloma.
    Oyajobi BO; Mundy GR
    Cancer; 2003 Feb; 97(3 Suppl):813-7. PubMed ID: 12548580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells.
    Shipman CM; Croucher PI
    Cancer Res; 2003 Mar; 63(5):912-6. PubMed ID: 12615702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin and macrophage protein 1-alpha (MIP-1a) in monoclonal gammopathy of undetermined significance (MGUS).
    Politou M; Terpos E; Anagnostopoulos A; Szydlo R; Laffan M; Layton M; Apperley JF; Dimopoulos MA; Rahemtulla A
    Br J Haematol; 2004 Sep; 126(5):686-9. PubMed ID: 15327520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of a role for RANKL in the development of myeloma bone disease.
    De Leenheer E; Mueller GS; Vanderkerken K; Croucher PI
    Curr Opin Pharmacol; 2004 Aug; 4(4):340-6. PubMed ID: 15251126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenesis of myeloma bone disease.
    Roodman GD
    Blood Cells Mol Dis; 2004; 32(2):290-2. PubMed ID: 15003820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoclast precursors, RANKL/RANK, and immunology.
    Xing L; Schwarz EM; Boyce BF
    Immunol Rev; 2005 Dec; 208():19-29. PubMed ID: 16313338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cytokines in bone diseases. Cytokines and myeloma bone disease].
    Abe M
    Clin Calcium; 2010 Oct; 20(10):1474-80. PubMed ID: 20890028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma.
    Abe M; Hiura K; Wilde J; Moriyama K; Hashimoto T; Ozaki S; Wakatsuki S; Kosaka M; Kido S; Inoue D; Matsumoto T
    Blood; 2002 Sep; 100(6):2195-202. PubMed ID: 12200385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-RANKL therapy for inflammatory bone disorders: Mechanisms and potential clinical applications.
    Anandarajah AP; Schwarz EM
    J Cell Biochem; 2006 Feb; 97(2):226-32. PubMed ID: 16240334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights in myeloma-induced osteolysis.
    Barillé-Nion S; Bataille R
    Leuk Lymphoma; 2003 Sep; 44(9):1463-7. PubMed ID: 14565645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma.
    Ehrlich LA; Roodman GD
    Immunol Rev; 2005 Dec; 208():252-66. PubMed ID: 16313353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of OPG/TRAIL complex in multiple myeloma: the OPG/TRAIL complex in an in vitro osteoclastogenesis model derived from human multiple myeloma-bone disease.
    Brunetti G; Colucci S; Rizzi R; Mori G; Colaianni G; Oranger A; Zallone A; Liso V; Grano M
    Ann N Y Acad Sci; 2006 Apr; 1068():334-40. PubMed ID: 16831934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Clinical implications of new insights into the regulation of bone resorption].
    Lems WF; Bijlsma JW
    Ned Tijdschr Geneeskd; 2005 Jul; 149(30):1664-7. PubMed ID: 16104110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The osteoprotegerin/osteoprotegerin ligand family: role in inflammation and bone loss.
    Yeung RS
    J Rheumatol; 2004 May; 31(5):844-6. PubMed ID: 15124240
    [No Abstract]   [Full Text] [Related]  

  • 20. Dickkopf-1: a suitable target for the management of myeloma bone disease.
    Gavriatopoulou M; Dimopoulos MA; Christoulas D; Migkou M; Iakovaki M; Gkotzamanidou M; Terpos E
    Expert Opin Ther Targets; 2009 Jul; 13(7):839-48. PubMed ID: 19530987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.