These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 16583277)
1. Hysteresis dynamics, bursting oscillations and evolution to chaotic regimes. Françoise JP; Piquet C Acta Biotheor; 2005; 53(4):381-92. PubMed ID: 16583277 [TBL] [Abstract][Full Text] [Related]
2. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
3. On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. Innocenti G; Genesio R Chaos; 2009 Jun; 19(2):023124. PubMed ID: 19566259 [TBL] [Abstract][Full Text] [Related]
4. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. Innocenti G; Morelli A; Genesio R; Torcini A Chaos; 2007 Dec; 17(4):043128. PubMed ID: 18163792 [TBL] [Abstract][Full Text] [Related]
5. Chaotic oscillations in a map-based model of neural activity. Courbage M; Nekorkin VI; Vdovin LV Chaos; 2007 Dec; 17(4):043109. PubMed ID: 18163773 [TBL] [Abstract][Full Text] [Related]
6. Chaotic bursting as chaotic itinerancy in coupled neural oscillators. Han SK; Postnov DE Chaos; 2003 Sep; 13(3):1105-9. PubMed ID: 12946203 [TBL] [Abstract][Full Text] [Related]
7. Chaos at the border of criticality. Medvedev GS; Yoo Y Chaos; 2008 Sep; 18(3):033105. PubMed ID: 19045443 [TBL] [Abstract][Full Text] [Related]
8. A breakthrough in neuroscience needs a "Nebulous Cartesian System" Oscillations, quantum dynamics and chaos in the brain and vegetative system. Başar E; Güntekin B Int J Psychophysiol; 2007 Apr; 64(1):108-22. PubMed ID: 17049654 [TBL] [Abstract][Full Text] [Related]
9. Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. González-Miranda JM Chaos; 2003 Sep; 13(3):845-52. PubMed ID: 12946176 [TBL] [Abstract][Full Text] [Related]
10. Generation of periodic and chaotic bursting in an excitable cell model. Fan YS; Chay TR Biol Cybern; 1994; 71(5):417-31. PubMed ID: 7993930 [TBL] [Abstract][Full Text] [Related]
11. A calcium-based phantom bursting model for pancreatic islets. Bertram R; Sherman A Bull Math Biol; 2004 Sep; 66(5):1313-44. PubMed ID: 15294427 [TBL] [Abstract][Full Text] [Related]
12. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Barrio R; Martínez MA; Serrano S; Shilnikov A Chaos; 2014 Jun; 24(2):023128. PubMed ID: 24985442 [TBL] [Abstract][Full Text] [Related]
13. Complex dynamics in the Oregonator model with linear delayed feedback. Sriram K; Bernard S Chaos; 2008 Jun; 18(2):023126. PubMed ID: 18601493 [TBL] [Abstract][Full Text] [Related]
14. Firing patterns in a conductance-based neuron model: bifurcation, phase diagram, and chaos. Qi Y; Watts AL; Kim JW; Robinson PA Biol Cybern; 2013 Feb; 107(1):15-24. PubMed ID: 22990669 [TBL] [Abstract][Full Text] [Related]
15. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478 [TBL] [Abstract][Full Text] [Related]
16. Topological invariants in the study of a chaotic food chain system. Duarte J; Januário C; Martins N Chaos; 2008 Jun; 18(2):023109. PubMed ID: 18601476 [TBL] [Abstract][Full Text] [Related]
17. A phantom bursting mechanism for episodic bursting. Bertram R; Rhoads J; Cimbora WP Bull Math Biol; 2008 Oct; 70(7):1979-93. PubMed ID: 18648884 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical bursting oscillations on a high-dimensional slow subsystem. Kiss IZ; Lv Q; Organ L; Hudson JL Phys Chem Chem Phys; 2006 Jun; 8(23):2707-15. PubMed ID: 16763702 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear electronic circuit with neuron like bursting and spiking dynamics. Savino GV; Formigli CM Biosystems; 2009 Jul; 97(1):9-14. PubMed ID: 19505632 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. Rand DA; Wilson HB; McGlade JM Philos Trans R Soc Lond B Biol Sci; 1994 Feb; 343(1035):261-83. PubMed ID: 8066105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]