These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16583438)

  • 1. Assessing the extent of protein intermolecular interactions at air-water interfaces using spectroscopic techniques.
    de Jongh HH; Wierenga PA
    Biopolymers; 2006 Jul; 82(4):384-9. PubMed ID: 16583438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein adsorption at air-water interfaces: a combination of details.
    de Jongh HH; Kosters HA; Kudryashova E; Meinders MB; Trofimova D; Wierenga PA
    Biopolymers; 2004 May-Jun 5; 74(1-2):131-5. PubMed ID: 15137110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules.
    Martin AH; Cohen Stuart MA; Bos MA; van Vliet T
    Langmuir; 2005 Apr; 21(9):4083-9. PubMed ID: 15835978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface.
    Kudryashova EV; Meinders MB; Visser AJ; van Hoek A; de Jongh HH
    Eur Biophys J; 2003 Sep; 32(6):553-62. PubMed ID: 12709747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of physical vs. chemical interactions in surface shear rheology.
    Wierenga PA; Kosters H; Egmond MR; Voragen AG; de Jongh HH
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):131-9. PubMed ID: 16445882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state.
    Wierenga PA; Egmond MR; Voragen AG; de Jongh HH
    J Colloid Interface Sci; 2006 Jul; 299(2):850-7. PubMed ID: 16600281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-induced changes to the molecular conformation and aggregate structure of beta-casein at the air-water interface.
    Vessely CR; Carpenter JF; Schwartz DK
    Biomacromolecules; 2005; 6(6):3334-44. PubMed ID: 16283763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial properties of heat-treated ovalbumin.
    Croguennec T; Renault A; Beaufils S; Dubois JJ; Pezennec S
    J Colloid Interface Sci; 2007 Nov; 315(2):627-36. PubMed ID: 17707856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited conformational change of beta-lactoglobulin when adsorbed at the air-water interface.
    Meinders MB; De Jongh HH
    Biopolymers; 2002; 67(4-5):319-22. PubMed ID: 12012457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic surface tension behavior in a photoresponsive surfactant system.
    Cicciarelli BA; Hatton TA; Smith KA
    Langmuir; 2007 Apr; 23(9):4753-64. PubMed ID: 17381140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces.
    Wierenga PA; Meinders MB; Egmond MR; Voragen AG; de Jongh HH
    J Phys Chem B; 2005 Sep; 109(35):16946-52. PubMed ID: 16853156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.
    Renault A; Rioux-Dubé JF; Lefèvre T; Pezennec S; Beaufils S; Vié V; Tremblay M; Pézolet M
    Langmuir; 2009 Jul; 25(14):8170-80. PubMed ID: 19400566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological changes in adsorbed protein films at the air-water interface subjected to large area variations, as observed by brewster angle microscopy.
    Xu R; Dickinson E; Murray BS
    Langmuir; 2007 Apr; 23(9):5005-13. PubMed ID: 17385900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure.
    Kudryashova EV; Visser AJ; De Jongh HH
    Protein Sci; 2005 Feb; 14(2):483-93. PubMed ID: 15659378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Film formation from colloidal dispersions stabilized by sugar derivatives and their controllable release for selective protein adsorption.
    Bae WS; Lestage DJ; Proia M; Heinhorst S; Urban MW
    Biomacromolecules; 2005; 6(5):2615-21. PubMed ID: 16153099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers.
    Kotsmar C; Pradines V; Alahverdjieva VS; Aksenenko EV; Fainerman VB; Kovalchuk VI; Krägel J; Leser ME; Noskov BA; Miller R
    Adv Colloid Interface Sci; 2009 Aug; 150(1):41-54. PubMed ID: 19493522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Film formation and surface gelation of gelatin molecules at the water/air interface.
    Leick S; Degen P; Köhler B; Rehage H
    Phys Chem Chem Phys; 2009 Apr; 11(14):2468-74. PubMed ID: 19325980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical consideration on preparing silver particle films by adsorbing nanoparticles from bulk colloids to an air-water interface.
    Hu JW; Han GB; Ren B; Sun SG; Tian ZQ
    Langmuir; 2004 Sep; 20(20):8831-8. PubMed ID: 15379514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of ovalbumin with phospholipids Langmuir-Blodgett film.
    Kamilya T; Pal P; Talapatra GB
    J Phys Chem B; 2007 Feb; 111(5):1199-205. PubMed ID: 17266275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular recognition on the supported and on the air/water interface-spread protein monolayers.
    Baszkin A
    Adv Colloid Interface Sci; 2006 Dec; 128-130():111-20. PubMed ID: 17196538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.