These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16583441)

  • 1. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: Comparison with in vivo results.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Orthop Res; 2006 May; 24(5):898-907. PubMed ID: 16583441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing.
    Isaksson H; Wilson W; van Donkelaar CC; Huiskes R; Ito K
    J Biomech; 2006; 39(8):1507-16. PubMed ID: 15972212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach.
    Khayyeri H; Checa S; Tägil M; Prendergast PJ
    J Orthop Res; 2009 Dec; 27(12):1659-66. PubMed ID: 19514073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Biomech; 2008; 41(1):145-54. PubMed ID: 17706229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells.
    Andreykiv A; van Keulen F; Prendergast PJ
    Biomech Model Mechanobiol; 2008 Dec; 7(6):443-61. PubMed ID: 17972123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity.
    Isaksson H; Comas O; van Donkelaar CC; Mediavilla J; Wilson W; Huiskes R; Ito K
    J Biomech; 2007; 40(9):2002-11. PubMed ID: 17112532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the most important cellular characteristics for fracture healing using design of experiments methods.
    Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K
    J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical conditions in the initial phase of bone healing.
    Epari DR; Taylor WR; Heller MO; Duda GN
    Clin Biomech (Bristol); 2006 Jul; 21(6):646-55. PubMed ID: 16513229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the frequency of the external mechanical stimulus on bone healing: a computational study.
    González-Torres LA; Gómez-Benito MJ; Doblaré M; García-Aznar JM
    Med Eng Phys; 2010 May; 32(4):363-71. PubMed ID: 20202885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy.
    Cheal EJ; Mansmann KA; DiGioia AM; Hayes WC; Perren SM
    J Orthop Res; 1991 Jan; 9(1):131-42. PubMed ID: 1984043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanobiology of initial pseudarthrosis formation with oblique fractures.
    Loboa EG; Beaupré GS; Carter DR
    J Orthop Res; 2001 Nov; 19(6):1067-72. PubMed ID: 11781006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the nutrient supply in fracture healing.
    Chen G; Niemeyer F; Wehner T; Simon U; Schuetz MA; Pearcy MJ; Claes LE
    J Biomech; 2009 Nov; 42(15):2575-83. PubMed ID: 19660757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants.
    Geris L; Van Oosterwyck H; Vander Sloten J; Duyck J; Naert I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):277-88. PubMed ID: 14675948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli.
    Steiner M; Claes L; Ignatius A; Niemeyer F; Simon U; Wehner T
    J R Soc Interface; 2013 Sep; 10(86):20130389. PubMed ID: 23825112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR; Lienau J; Schell H; Witt F; Duda GN
    Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel model to study metaphyseal bone healing under defined biomechanical conditions.
    Claes L; Veeser A; Göckelmann M; Simon U; Ignatius A
    Arch Orthop Trauma Surg; 2009 Jul; 129(7):923-8. PubMed ID: 18654792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the external formation of a bone fracture callus: an optimisation approach.
    Comiskey DP; MacDonald BJ; McCartney WT; Synnott K; O'Byrne J
    Comput Methods Biomech Biomed Engin; 2012; 15(7):779-85. PubMed ID: 21614706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.