These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16583552)

  • 1. Assessing occupational mercury exposures during the on-site processing of spent fluorescent lamps.
    Lucas A; Emery R
    J Environ Health; 2006 Mar; 68(7):30-4, 40, 45. PubMed ID: 16583552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and recovery of mercury from spent fluorescent lamps.
    Jang M; Hong SM; Park JK
    Waste Manag; 2005; 25(1):5-14. PubMed ID: 15681174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps.
    Durão WA; de Castro CA; Windmöller CC
    Waste Manag; 2008 Nov; 28(11):2311-9. PubMed ID: 18096377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.
    Asari M; Fukui K; Sakai S
    Sci Total Environ; 2008 Apr; 393(1):1-10. PubMed ID: 18237763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury Pollution, Treatment and Solutions in Spent Fluorescent Lamps in Mainland China.
    Li Z; Jia P; Zhao F; Kang Y
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30720797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.
    Rey-Raap N; Gallardo A
    Waste Manag; 2012 May; 32(5):944-8. PubMed ID: 22206740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury risk from fluorescent lamps in China: current status and future perspective.
    Hu Y; Cheng H
    Environ Int; 2012 Sep; 44():141-50. PubMed ID: 22321538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling oriented comparison of mercury distribution in new and spent fluorescent lamps and their potential risk.
    Hobohm J; Krüger O; Basu S; Kuchta K; van Wasen S; Adam C
    Chemosphere; 2017 Feb; 169():618-626. PubMed ID: 27912186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preventing mercury vapor release from broken fluorescent lamps during shipping.
    Glenz TT; Brosseau LM; Hoffbeck RW
    J Air Waste Manag Assoc; 2009 Mar; 59(3):266-72. PubMed ID: 19320265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treating high-mercury-containing lamps using full-scale thermal desorption technology.
    Chang TC; You SJ; Yu BS; Chen CM; Chiu YC
    J Hazard Mater; 2009 Mar; 162(2-3):967-72. PubMed ID: 18603361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination.
    Lecler MT; Zimmermann F; Silvente E; Masson A; Morèle Y; Remy A; Chollot A
    Waste Manag; 2018 Jun; 76():250-260. PubMed ID: 29496382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photokeratitis and UV-radiation burns associated with damaged metal halide lamps.
    Kirschke DL; Jones TF; Smith NM; Schaffner W
    Arch Pediatr Adolesc Med; 2004 Apr; 158(4):372-6. PubMed ID: 15066878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mercury impregnation in dentists and dental assistants in Monastir city, Tunisia].
    Chaari N; Kerkeni A; Saadeddine S; Neffati F; Khalfallah T; Akrout M
    Rev Stomatol Chir Maxillofac; 2009 Jun; 110(3):139-44. PubMed ID: 19419743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of retorted phosphor powder from spent fluorescent lamps by thermal process.
    Park HS; Rhee SW
    Waste Manag; 2016 Apr; 50():257-63. PubMed ID: 26882866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.
    Tan Q; Li J
    Waste Manag Res; 2016 Jan; 34(1):67-74. PubMed ID: 26628052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate and management of high mercury-containing lamps from high technology industry.
    Chang TC; You SJ; Yu BS; Kong HW
    J Hazard Mater; 2007 Mar; 141(3):784-92. PubMed ID: 16979288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs).
    Salthammer T; Uhde E; Omelan A; Lüdecke A; Moriske HJ
    Indoor Air; 2012 Aug; 22(4):289-98. PubMed ID: 22188528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shedding some light on mercury lamps.
    Christen K
    Environ Sci Technol; 2006 Oct; 40(19):5829. PubMed ID: 17051763
    [No Abstract]   [Full Text] [Related]  

  • 19. Mercury speciation in fluorescent lamps by thermal release analysis.
    Raposo C; Windmöller CC; Durão WA
    Waste Manag; 2003; 23(10):879-86. PubMed ID: 14614922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nano-selenium reactive barrier approach for managing mercury over the life-cycle of compact fluorescent lamps.
    Lee B; Sarin L; Johnson NC; Hurt RH
    Environ Sci Technol; 2009 Aug; 43(15):5915-20. PubMed ID: 19731697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.